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Abstract  
Students show deficient understanding on fraction division and supporting that understanding remains a 
challenge for mathematics educators. This article aims to describe primary students’ understanding of partitive 
fraction division (PFD) and explore ways to support their understanding through the use of sequenced fractions 
and context-related graphical representations. In a design-research study, forty-four primary students were 
involved in three cycles of teaching experiments. Students’ works, transcript of recorded classroom discussion, 
and field notes were retrospectively analyzed to examine the hypothetical learning trajectories. There are three 
main findings drawn from the teaching experiments. Firstly, context of the tasks, the context-related graphical 
representations, and the sequence of fractions used do support students’ understanding of PFD. Secondly, the 
understanding of non-unit rate problems did not support the students’ understanding of unit rate problems. Lastly, 
the students were incapable of determining symbolic representations from unit rate problems and linking the 
problems to fraction division problems. The last two results imply to rethink unit rate as part of a partitive division 
with fractions. Drawing upon the findings, four alternative ways are offered to support students’ understanding 
of PFD, i.e., the lesson could be starting from partitive whole number division to develop the notion of fair-
sharing, strengthening the concept of unit in fraction and partitioning, choosing specific contexts with more 
relation to the graphical representations, and sequencing the fractions used, from a simple to advanced form.  

Keywords: Understanding, Partitive, Fraction division, Unit rate, Design research  

Abstrak  
Siswa menunjukkan pemahaman yang kurang pada materi pembagian pecahan dan mendukung pemahaman 
tersebut masih menjadi tantangan bagi pendidik matematika. Artikel ini bertujuan menjelaskan pemahaman 
pembagian pecahan partitif siswa sekolah dasar dan merumuskan cara untuk mendukung pemahaman tersebut 
melalui penggunaan pecahan secara terurut dan konteks yang berkaitan dengan representasi grafik. Dalam 
sebuah penelitian desain, empat puluh empat (44) siswa terlibat dalam tiga tahap eksperimen pengajaran. Hasil 
kerja siswa, transkrip rekaman diskusi kelas, dan catatan lapangan dianalisis secara retrospektif untuk menguji 
lintasan hipotesis pembelajaran. Terdapat tiga temuan utama berdasarkan eksperimen pengajaran. Pertama, 
konteks tugas, hubungan konteks dengan penggunaan representasi grafik, dan urutan pecahan yang digunakan 
sangat mendukung pemahaman siswa terkait pembagian pecahan partitif. Kedua, pemahaman siswa yang 
terbangun pada masalah yang bukan unit rate belum membantu siswa dalam menyelesaikan masalah unit rate. 
Terakhir, siswa belum mampu menentukan representasi simbolik dari permasalahan unit rate dan 
menghubungkannya dengan pembagian pecahan. Dua temuan terakhir menjadi bahan pertimbangan terkait unit 
rate sebagai bagian pembagian pecahan partitif. Merujuk pada temuan tersebut, empat cara ditawarkan untuk 
mendukung pemahaman pembagian pecahan partitif siswa, yaitu pembelajaran dimulai dengan pembagian 
partitif bilangan asli untuk mengembangkan konsep pembagian adil, memperkuat konsep satuan pecahan dan 
partisi, memilih konteks yang berhubungan dengan penggunaan representasi grafik, dan mengurutkan pecahan 
yang digunakan dari yang sederhana sampai yang sulit.   
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Prior studies have revealed the students’ errors in fraction division (FD) which reflect the lack of 

conceptual understanding on the topic (Tirosh, 2000; Cramer, Monson, Whitney, Leavitt, & Wyberg, 
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2010; Aksoy & Yazlik, 2017). Several aspects relate to the students' problems in learning fraction 

division, namely mathematics teachers’ content knowledge (Ma, 2010), the instructions which promote 

the conceptual understanding of students (Hu & Hsiao, 2013), and the complex nature of fraction 

division (Prediger, 2006; Ma, 2010). These aspects imply that the success of the students’ 

comprehension of fraction division mainly lies in the hands of teachers; Their way of arranging the 

content and learning-environment has a high impact on the understanding of the students. In summary, 

it can be pointed out that mathematics teachers need to have a relational understanding of the fraction 

division and have to be capable of designing learning environments with activities that promote the 

relational understanding of the students to promote an adequate understanding of the topic. The second 

point as the focus of the present study was in contrast to what we found in classroom observations as 

part of preliminary phase of design research wherein, for example, the learning activities were focused 

on procedural aspect instead of developing students’ understanding and did not start with contextual 

problems which facilitate students to employ their prior knowledge to solve the problem and develop 

mathematical knowledge.    

In the literature, FD has diverse conceptualizations (Sinicrope, Mick, & Kolb, 2002; Gregg & 

Gregg, 2007; Lamon, 2012; Adu-Gyamfi, Schwartz, Sinicrope, & Bossé, 2019). Sinicrope et al. (2002) 

categorize FD into five conceptualizations, namely measurement, partitive, unit rate, the inverse of an 

operator multiplication, and the inverse of a Cartesian product. Several authors categorize unit rate as 

part and the result of Partitive Fraction Division (PFD) (Gregg & Gregg, 2007; Lamon, 2012; Jansen & 

Hohensee, 2016). The present study adapts the latter conception of PFD which provides a fair-sharing 

situation and involve unit rate. In PFD, the number of groups and the total amount to be equally shared 

are given but the amount in each group is not known. It can be represented as total ÷ number of groups 

= number in each group (Petit, Laird, Marsden, & Ebby, 2016). An example of PFD in the context of 

fair-sharing is “Anna has 3/4 of a chocolate bar that has to be equally shared with three friends. How 

many parts of the chocolate does each one of the friends get?” 

The measurement type of fraction division tends to have more attention than the partitive one in 

textbooks. Ott, Snook, and Gibson (1991) assert that most of literature and textbooks tend to ignore the 

partitive division with fractions. The chapter of fraction division in Indonesia primary school 

mathematics textbooks also shows less attention on partitive problems (Wahyu & Mahfudy, 2018). 

Zaleta (2006) argues that measurement division with fractions is more common than the partitive 

interpretation since the latter is problematic to imagine in natural context the number of groups is not 

the whole numbers. For a viable conceptual understanding, both types of fraction divisions are equally 

important (Flores, 2002). The apprehension of PFD should also be promoted since it plays a significant 

role in helping students to understand other mathematical concepts such as rate (Sinicrope et al., 2002; 

Lamon, 2012), slope, probability, and proportional reasoning (Hohensee & Jansen, 2017). Van de Walle 

(2004) suggests to mix up of the types of division problems in the instruction equally. Petit et al. (2016) 

also emphasize the promotion of various types of fraction division to ensure the students do not 
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overgeneralize one way of thinking division problems. 

Most of the studies on PFD focus on prospective mathematics teachers’ content-related 

understanding (Simon, 1993; Nillas, 2003; Zembat, 2004; Gregg & Gregg, 2007; Lo & Luo, 2012; 

Jansen & Hohensee, 2016; Hohensee & Jansen, 2017). For instance, Jansen and Hohensee (2016) 

investigated the nature of prospective primary teachers’ conceptions of partitive division with fractions. 

A small number of studies focuses the understanding of students (Okazaki & Koyama, 2005; Zaleta, 

2006; Muchsin, Hartono, & Putri, 2014). Okazaki and Koyama (2005) designed three division problems 

and three didactical activities to support the 5th graders in constructing the meaning of division with 

decimals through overcoming their difficulties. The study aimed to analyze students’ logical reasoning 

in understanding division with decimals (partitive form). Zaleta (2006) inquired into invented 

computational strategies developed by the 6th graders in solving four fraction division problems, two of 

which are partitive problems. Muchsin et al. (2014) employed three problems of partitive fraction 

division with a duration context to identify students’ strategies.   

The current study notably differs from prior studies regarding three aspects (Okazaki & Koyama, 

2005; Zaleta, 2006; Muchsin et al., 2014). Firstly, the use of a less strenuous or sequential form of 

fractions as the starting point. Secondly, the use of specific, context-related graphical representations to 

support students' understanding as well as using contexts as a starting point in the sense of Realistic 

Mathematics Education (RME) (Freudenthal, 1981). Thirdly, a proposal for alternative ways of 

promoting the students’ understanding of PFD. We argue that starting with a fraction dividing a whole 

number (5/10÷5) is much easier than both dividend and divisor being a fraction (1/4÷1/2 or 1½÷3/5). 

Furthermore, the use of different graphical representations and the linking of different representations 

(e.g. the contextual, verbal, and graphical representation) is highly recommended by researchers for 

fostering learning processes about fractions (Post & Reys, 1979; Van de Walle, Karp, & Bay-Williams, 

2010; Prediger, 2013). We designed the learning activities that feature sequenced fractions and context-

related graphical representations for fostering the students’ understanding. Drawing from conducted 

teaching experiments with designed learning activities, we synthesize those outlined ways for students 

to understand PFD. Following this, two questions are addressed in this article: (1) how do primary 

students understand PFD through the designed learning activities? and (2) what are the characteristics 

of learning activities intended to support students' understanding of PFD? 

The current study was conducted in the light of RME theory (Freudenthal, 1981; Gravemeijer, 

1994) which emphasizes the use of familiar contexts embedded in sequential activities as the starting 

point of mathematics instruction (Gravemeijer, 2011; Widjaja, 2013) and models in solving 

mathematics problems (Gravemeijer, 1999). Many studies have shown how the principles of RME: 

guided reinvention through progressive mathematization, didactical phenomenology, and emergent 

models, transform the classroom setting and improve the students’ learning processes from a 

mechanistic way of learning to a more interactional learning-environment promoting students' co-

constructive and everyday-experience-based understanding process (Ronal, 2014; Wahyu, 2015; 
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Nasution, Putri, & Zulkardi, 2018; van Gallen & van Eerde, 2019). 

 

METHOD  

Design research (DR) was employed in the current study with three stages: preparation and design 

(preparing the experiment), three cycles of teaching experiments, and retrospective analyses between 

and after the teaching experiments (Bakker, 2004; Gravemeijer & Cobb, 2006). Gravemeijer and 

Prediger (2019) argue that RME requires the teachers to help students develop their mathematics 

knowledge, while at the same time the teachers focus on the learning goals. This leads to an interactive 

process in which the teachers adjust to the students’ thinking. For this process, design research is a 

companion to RME in developing local instruction theories, which can be frameworks of references for 

teachers. Moreover, DR fitted the aim of the study, which is to produce design principles for teaching 

and learning of PFD and to reconstruct the students’ understanding of the topic in the primary schools. 

To achieve the aim, a qualitative analysis was conducted, discussed and resulted in a Hypothetical 

Learning Trajectory (HLT) for PFD, which consists of the learning goal, learning activity, and 

hypotheses about the learning processes. The learning goals were to enable the students to understand 

PFD by (1) solving the problem-context with specific graphical representations; (2) determining number 

sentences (symbolic representations) of the problems; and (3) linking solutions including graphical 

representations with the symbolic representations.  

 

Problem-Context  

The design of the problem-context in this study went through two stages. At the first stage, we 

produced three problems for the first two teaching experiments (Table 1). The problems included 

fractions divided by a whole number which results in fractions using two contexts (Time and Chocolate 

sharing). Problem 1.1 is in the form of a/b ÷ c, c does not divide a, meanwhile problem 1.2 and 1.3 

along with problems in the second experiment are a/b ÷ c, c divides a. 

At the second stage, the fractions used in the third teaching experiment have been redesigned in terms 

of the content and sequence. One might notice a difference in fractions content used in the first two teaching 

experiments and third teaching experiment. Analyses of the first two teaching experiments as well as further 

theoretical findings showed a necessity to redesign the tasks: For a viable conceptual understanding of PFD, 

a broadening of the tasks seemed to be required. These redesigned and broadened teaching experiments 

consisted of optimized problem contexts (Chocolate sharing) and more PFD-relevant content: The students 

were given ten problems about partitive whole number division, fractions divided by the whole number, and 

fractions divided by fractions. An example for theoretical aspects influencing the task design was the finding 

that the use of partitive whole number division may help the students construct the meaning of partitive 

division or fair-sharing before working with fractions. Hence, we expected the students not to treat partitive 

division with fractions as the measurement type of fraction division – a finding we observed in the early 

teaching experiments. Another example for theoretical aspects influencing the third teaching experiments 
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was that researches such as van de Walle et al. (2015) strongly suggest the teachers to introduce and link the 

whole number division to fractions division and PFD also includes fractions as the divisor or unit rate 

problems (Gregg & Gregg, 2007; Lamon, 2012).  

 

Participants and Classroom Context 

The first teaching experiment involved six 5th-grade students with differences in mathematical 

performance (measured by their school grades) who were purposively selected to examine whether and 

how the designed learning activities worked with regard to students’ usual mathematical performance. 

We were aware that school grades do not represent mathematical competence objectively. The school 

grades were merely an indicator and we did not formulate any hypotheses about the conceptual 

understanding being dependent from school grades. In the second teaching experiment, twenty-eight 

5th-grade students participated in a whole-class setting with a focused group (5 students). The third 

teaching experiment included ten 4th-grade students. The students were in the last term of year four and 

taking part in an enrichment program. The three fraction operations (addition, subtraction and 

multiplication) were taught in the program before the teaching experiment. We argue that the PFD 

problems are eligible to be given to the ten students in the third teaching experiment for two reasons: 

pre-requisite topics (addition, subtraction and multiplication of fractions) have been given and 

classroom contexts they had prior to teaching experiment are similar to the students involved in the 

foregoing teaching experiments.  

In our design experiment, PFD problems were given in phases of individual work following an 

initial phase of classroom discussion. We concentrated our research on the individual responses to the 

designed problems in order to get in-depth insights in the students' understanding reported in Table 1.  
 

Table 1. The problem-context of PFD 

Teaching 

Experiment 
The Contextual Problems Context 

Symbolic 

Representations 

First 1.1. Dwi has 3/4 hours to solve 5 problems in a math 

assignment. If she uses equal time for each problem, 

how many hours can she give to each? 

1.2. Juz’an has 5/6 of a chocolate bar that has to be 

shared with his five friends. How many parts of the 

chocolate does a friend get? 

Time  

 

 

Chocolate 

sharing  

3/4 ÷ 5 

 

 

5/6 ÷ 5 

 

 1.3. In a math competition, the students were given 

2/3 hours to solve 2 problems. If each problem is 

given equal time, how many minutes are required for 

one problem? 

Time 2/3 ÷ 2 

 

Second 2.1. Dwi has 5/10 hours to solve 5 problems in a Time 5/10 ÷ 5 
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Teaching 

Experiment 
The Contextual Problems Context 

Symbolic 

Representations 

math assignment. If equal time is given to each 

problem, how many hours required to solve one 

problem? 

2.2. and 2.3 are similar to 1.2 and 1.3 

 

 

 

Chocolate 

sharing 

and time 

 

 

 

5/6 ÷ 5;  

2/3 ÷ 2 

Third  Excerpt of Chocolate Puzzles problems: 

3.1. Mother has 6 chocolates that have to be shared 

equally to her three children. How many chocolates 

does each of her children get? 

[…] 

3.5. Beta has 2/3 parts of a chocolate bar that have to 

be shared equally to his 3 classmates. How many 

parts of the chocolate bar does each friend get? 

*3.6.b. Caca has 3/4 parts of a chocolate bar that 

have to be placed in three cake boxes. 1/4 of the first 

cake box is filled with the given chocolate bar. How 

many chocolate bars are needed to fill up the cake 

box fully? 

[…] 

 

Chocolate 

sharing 

 

 

Chocolate 

sharing 

 

Chocolate 

sharing 

 

 

6 ÷ 3 

 

 

 

2/3 ÷ 3 

 

 

3/4 ÷ 1/4  

 

*Problems 3.6.a-3.6.d were initially unit rate problems used in lesson 2 of the third teaching experiment, 

then they were revised (Table 2) for lesson 3.  
 

The classroom context of the study in the three teaching experiments was: (1) the students were 

used to having mechanistic way of learning instead of an interactional way of learning, (2) prior lessons 

focused on procedural knowledge rather than developing conceptual understanding, and (3) prior to the 

teaching experiment, the use of contextual problems as the starting point of mathematical topics was 

not a common way of starting lessons, and the students were not actively encouraged to use graphical 

representations. Furthermore, contextual problems were only used for application at the end of the 

lesson, not for starting conceptual understanding processes based on everyday-experience. 

 

Data Collection and Analysis   

Data collected in the current study was students’ works on the given tasks, recorded classroom 

discussion, and field notes which capture crucial moments of students’ responses. Data analysis 

followed the paradigm of qualitative analysis by aiming at examining and contrasting the hypotheses 

of learning in HLT with the actual learning process, whether or not the enacted hypotheses lead to 
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achieving the learning goals. The data was retrospectively analyzed in five cyclic steps: (1) students’ 

works on the tasks in each teaching experiment were examined regarding the use of graphical 

representations and symbolic representation created by the students to solve the tasks; (2) recorded 

classroom discussion was transcribed and sequenced afterwards (together with the field notes); (3) 

critical moments were selected from the transcripts and field notes to examine the students’ reasoning 

on linking graphical-representation-based solutions with the symbolic representation. Oral or verbal 

explanatory utterances of students could not be gathered in each teaching experiment since we could 

not carry out all of the one-to-one interviews. Nevertheless, we made sure that the students’ written 

works were complete at least and verbal explanations could be used for further insights (see for example 

Figure 3 and Figure 6); (4) students’ works and critical moments of observed and transcribed utterances 

were triangulated to draw inference on learning goals; and (5) the achievement of the learning goals, 

based on the outcomes in a class test about fraction division, was utilized to evaluate the matching of 

learning hypotheses with the students’ actual learning trajectory.  

 

RESULT AND DISCUSSION  

In this part, we firstly provide the results from the teaching experiments in the form of students’ in-

group and/or individual work and present interpretations of the learning process (supported by the students’ 

works and parts of recorded classroom discussions or field notes). Following this, we formulate important 

findings in each teaching experiment based on the interpretations, afterwards we conclude the main findings 

with regard to our research questions. In the last step, we thoroughly discuss the main findings of all teaching 

experiments and the impact of the proposed design principles on the learning trajectories.  

 

The First Teaching Experiment  

Problem 1.1 was given to be discussed in the group. It was conjectured that the students could 

write a number sentence for the problem. This conjecture was in line with the real process. They could 

write correct number sentence of the problem, 3/4 ÷ 5. Another conjecture was that the students might 

not be able to draw multiple graphical representations, or they could only draw one representation to 

visualize the problem. However, the conjecture did miss the real process. The students even did not 

have any idea on how to represent 3/4 hour in the suggested graphical representations (Figure 1). 

Consequently, this outcome dismissed the next conjecture that the students might be able to solve the 

problem through the aid of a graphical representation.   

 

 

 

 

 

Figure 1. The proposed graphical representations to help solving group problem 
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To support the students, we gave them a graphical representation in form of dots (Figure 1) and 

gave hints such as one dot represents 1/12 and then asked how to represent the fraction 3/4. It took 

longer than we expected for most of the students to understand that 3/4 equals to 9/12. After that, we 

related the graphical representation to the problem by asking more generally how the five given 

problems in math assignment associated with the 9 dots in the model. Unfortunately, none of the 

students gave a proper answer to that question. This leads us to the conclusion that we need to be more 

precise as well as focused in our impulses to relate the contextual problem with the graphical 

representation and the symbolic representation. In the end, it provided helpful to use not one, but 

different kinds of graphical representations (with different levels of abstractions): It enabled the students 

to choose between the representations and link them to the mathematical problem (Figure 2). 

 

 

 

 

(a) The works of group 1 

 

 

 

 

(b) The works of group 2 

Figure 2. The students’ works on the problem using multiple graphical representations 
 

Not only did the students use multiple graphical representations to solve the problem but also 

linked it to the symbolic representation as shown in the following part of transcripts.  
 

R : Could you explain how 3/4 ÷ 5 results in 3/20 using a set of stars? 
S1.G1* : Group the stars into four then determine 3/4 of it. Then 15 stars are shared 

equally to 5. Hmm… (pauses some seconds) 
R : Could anyone help your friend? 
S2.G1 : I, Sir (Raise his hand). One math problem gets 3 stars as in the fraction 

3/20  
R : That is great 

*Student 1 in Group 1 

In order to examine further the students’ understanding, each student was given an individual task 

(Problem 1.2 and 1.3). Surprisingly, all students had no problems in solving problem 1.2 using self-developed 

graphical representations (Figure 3). For problem 1.3, all students could determine the symbolic representation 

and construct their preferred graphical representation, mostly being area models (Figure 4). However, five of 

them focused on finding the quotient using graphical representations but missed answering the question of the 

problem (which is to determine how many minutes were need for solving one math problem).  
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Translation: 

Figure 3. The sample of one student’s work on problem 1.2 
 

There are important findings in the first teaching experiment: (1) in the first group, the students 

could not come up with a single graphical representation to visualize 3/4 hours. It leads us to the 

presumption that the relation of 'hour' to either the number line, sets of objects, or area model is 

disconnected because of contextual obstacles. It implies that contexts affect the way students are using 

(or not using) with the graphical representation; (2) the students could not directly determine 3/4 from 

the sets of objects or that 3/4 equals 9/12, which hindered them in using a graphical representation to 

solve the problem; (3) the students’ works on the individual problem 1.2 indicate that the context of 

chocolate sharing is much more familiar and easier to connect with graphical representations (especially 

in form of areas); and (4) despite the fact that the students found it difficult to relate the hour context 

with a graphical representation in problem 1.1, it was not an issue any more in problem 1.3. 

 

 

 

 

 

 

Figure 4. The sample of students’ work on problem 1.3 
 

We assume that there might be an impact of students' prior works on the same context. We conclude 

that a careful use of contexts being related to more suitable graphical representations (context-related 

graphical representations) and the choice of fractions significantly contributes to the students' understanding 

of the partitive fraction divisions. The context of sharing 5/6 cakes to 5 persons is easily related to graphical 

representations than fairly sharing 3/4 hours to 5 mathematics problems: The context of sharing cakes seems 

to be more appropriate to foster students’ understanding of partitive fraction division. Furthermore, we 

observed that the use of specific fractions may help the students in creating graphical representations: 

Constructing a graphical representation about dividing 2/3 hour to 2 mathematics problems is not as tricky as 

constructing a graphical representation of 3/4 hour divided to 5 mathematics problems.  

 

The Second Teaching Experiment 

The students were grouped in groups of five students, one group being the focus-group. The 

1 orang (1 friend) Given chocolate  
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activities in the focus-group were recorded as video and audio data, whereas the other four groups were 

only recorded by one static camera. The different treatment was necessary due to the use of the whole 

classroom, which involves 28 students, and it exceeded the resources to have all groups recorded 

separately. The students in the focus-group were carefully selected to be representative enough in the 

study and thus were matched in terms of mathematics ability. 

 

 

 

 

 

 

 

 

 

 

Figure 5. The works of students in one of the non-focused groups for problem 2.1 
 

Problem 2.1 was given to all groups. Figure 5 and Figure 6 show the works of two groups on this problem. It 

reveals that graphical representations could be easily constructed to solve a problem involving fractions 5/10 ÷ 5. 

The focus-group could determine immediately that 1/10 hour was needed for one problem. The students in the focus-

group could relate the 5 problems and the given time (5/10 hour) by using the graphical representation as displayed 

in Figure 5 and Figure 6. Each divided part of the rectangle (Figure 6) stands for one problem.  

 

 

 

 

 

 

 

Figure 6. The works of students in the focused group for problem 2.1 

The mathematical problem was different from problem 1.1 (in terms of chosen fractions), where 

the students could not directly associate 3/4 with 5 problems by using the graphical representation. A 

further analysis was required to find out that 3/4 can be written as 15/20. The students also had no 

problems in solving problem 2.2, being given in the first teaching experiment also (Figure 7). Problem 

2.1 and 2.2 were given and discussed in one lesson.  

 

5/10 ÷ 5 = 1/10 hour = 6 minutes   
Translation 

One problem 
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Figure 7. The sample of students’ works on problem 2.2 
 

Problem 2.3 was given in the next lesson. Each students’ work on the problem shows a contradictory 

result. There were only eight students who properly used a graphical representation to solve the problem. Figure 

8 and Figure 9 shows excerpts of two students' works. In the focus-group, three of four students were amongst 

eight students who correctly solved the problem using graphical representations. 

 

 

 

 
Figure 8. The sample of a student’s work in a non-focus-group for problem 2.3 

 

The second teaching experiment uncovers several findings: (1) using similar contexts and 

different contents of fractions (5/10 ÷ 5), the students were able to solve the problem using graphical 

representations immediately. It shows us that, although with similar contexts as used in the first teaching 

experiment, the use of a/b ÷ c (a is divisible by c) is easier for students than 3/4 ÷ 5 (a/b ÷ c, a is not 

divisible by c). Thus, using a specific sequence of fractions to teach PFD seems important in supporting 

the students' understanding of PFD. This assumption is also supported by the students' works on the 

problems 1.2 and 2.2 which consisted of similar fractions; (2) the cause for the students’ work on 

problem 2.3 showing different results compared to problem 1.3 might be the attention that the teachers 

put on the unfocused groups.  

Drawing from the findings of the two prior teaching experiments, in particular using context-

related graphical representations and a better sequence of factions for the PFD problems and further 

analysis of the PFD concept (Sinicrope et al., 2002; Gregg & Gregg, 2007; Lamon, 2012), we extended 

the problem-contexts and changed the context into the chocolate context for the third teaching 

experiment. The primary consideration behind the use of the chocolate context was the fact that students 

could be more used to this context as well as our observation that working with non-cake contextual 

problems lead to students’ difficulties in self-developed graphic representations. Besides the area model 

Translation 

5/6 of Juz’an’s chocolate 
 

1/6 of chocolate for one friend 
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we picked up from the students’ use, we included three more graphical representations of chocolates: 

The chocolate bar (area model), chocolate stick (number line), and chocolate chip (sets of objects) (Petit 

et al., 2016) so that the students were supported in using more than the area model. 

 

 

 

 

 

 

 

Figure 9. A student’s work in the focused group for problem 2.3 

 

The Third Teaching Experiment  

In this teaching experiment, the students were initially given ten problems. The problem 3.1 is a 

whole number of partitive division and problems 3.2-3.10 were PFD-problems, four of them being unit 

rate problems. The problems were solved and discussed in two lessons. Additionally, one lesson was 

designed to discuss the revision of unit rate problems since the students had shown difficulties 

understanding the unit rate problems in the previous lessons. 

For the first lesson, we focused on problem 3.1-3.5, which consists of sequenced fractions as 

follows: 6 ÷ 3, 5/6 ÷ 5, 1/2 ÷ 3, 4/7 ÷ 2, and 2/3 ÷ 3. The sample word problem is that Budi has 4/7 of 

a chocolate chip that has to be shared equally with his two friends. How many part(s) of the chocolate 

chip does each friend get? Solving problems with these new contexts involving whole number divisions 

was not complicated for the students. Eight students drew area models (Figure 10) to represent the 

chocolate; meanwhile, two students used sets of objects (chocolate chip) to determine the amount of 

chocolate each child gets. The idea of providing the students with partitive whole number division 

problem is to develop the notion of partitive or fair-sharing. Accordingly, the notion could be extended 

to the partitive division with fractions. 

 

 

 
Figure 10. A student’s answer for whole number partitive division 

 

As in the two preceding teaching experiments, the students also found it easy to write 5/6 ÷ 5 as 

a number sentence and draw an area model as well as a set of objects (Figure 11.a) to solve problem 

3.2. When a student was asked how she determined 1/6, she explained that "Ani has 5 Choco left 

(pointing to five similar shaded parts). One friend gets this (points to one); it is 1/6." For problem 3.3, 

Translation 

1/3 hour = 20 minutes 

So, the time required to solve 
one problem is 20 minutes/ 
1/3 hour. 

Translation: anak (child) 
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a student we approached already drew two chocolate sticks and determined 1/2 of it (Figure 11.b). He 

then partitioned one chocolate stick into five. The following transcript shows our discussion. 
 

R : Could you explain your drawings? 
S : I divided a chocolate into five to share to three friends 
R : Why did you make five parts of it when there are only for three friends? 
S : … (He took about a minute to rethink his drawing then he suddenly changed the 

chocolate stick into 3 parts and wrote the associated numbers). It is three parts for 
three friends, not five parts.    

R : Could you draw a rectangle to solve the problem? 
S : … (Drawing a rectangle and partition it into six parts, Figure 11.b). Non-shaded parts 

are for three friends, each gets 1/6  
 

Of 10 students, only one student used a graphical representation and yet determined the quotient 

incorrectly. All students could construct graphical representations to solve the two remaining problems 

(Figure 11.c and Figure 11.d). 

In the second lesson, the fractions used for unit rate problems (3.6.a - 3.6.c) were 3/4 ÷ 1/4, 3/4 

÷ 2/3, and 3/4 ÷ 1½. Problem 3.6.d asks the students to decide which cake box is the smallest one based 

on their solutions to three prior problems. The excerpt of the word problem is shown in Table 1 (3.6.a).  

 

 

 

 

 

 

 

 

Figure 11. Students’ selected answers for the PFD problems 
 

All students had no ideas on how to solve problem 3.6.a, from drawing a suitable graphical 

representation and determine a related symbolic representation. In this case, we led the students to focus 

on drawing graphical representations of available chocolate with a cake box. The transcript below 

reveals a student’s difficulty with the problem.  

S : … (Drawing the representation of chocolate and cake box, Figure 12) 
R : How the box was 1/4-filled with 3/4 of a Choco bar? 
S : … (Drawing right-side area model where one of four parts shaded to represent 

1/4-filled box) 
R : How it relates to 3/4 of a Choco bar?    
S : … (Thinking some seconds). It is difficult. I have no idea to solve it.  
R : Could you draw 3/4 of a choco filled in the box? 
S : … (he partitioned the model vertically to have 3 parts) 
R : What do you think about the remaining unshaded parts? What amount of chocolate 

does it represent? 
S : … (writing 3/4 in each 1/4 of the box) 
R : So, how many chocolates are needed to fill up the whole cake box? 

(a) (b) 

(d) (c) 
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S : … (Thinking some seconds). I do not know Sir. 
R : Well, look at the upper rectangle. How many parts of a chocolate? 
S : … (marking every four parts in the right-side area model which represents one 

chocolate) Three chocolates Sir.   
R : Could you write number sentence for the problem as you did in previous problems? 
S : … (Reading problem 3.6.a) Sir, I do not know. It is different problem.   

 

We proceeded to the second problem and found that the students were again not able to 

understand the problem even with our support. Problem 3.6.b and 3.6.c are more complex than problem 

3.6.a since it involves non-unit fraction as the divisors, which means that the students had to deal with 

remainders. Considering students’ difficulties, we tried finding alternatives to revise the problems.  

 

 

 

 
 

Figure 12. Student’s answer for the initial unit rate problem 
 

The third lesson was purposefully arranged for discussing the revised unit rate problems. The 

findings in the second lesson showed students having troubles in understanding unit rate problems. In 

this case, we tried to make the unit rate problems easier by modifying the number of cakes to be filled 

in the Cakebox (Table 2). Our new word problem then was “3/4 of a cake only fill up 1/4 of a Cakebox, 

how many cakes are needed to fill up a whole Cake box?”.    
 

Table 2. Revised unit rate problems 

Part Available cakes Filled Cakebox Symbolic representations 

A 1 

1/4 

1/2 

3/4 

1/4 

 

1 ÷ 1/4 

1/4 ÷ 1/4 

1/2 ÷ 1/4 

3/4 ÷ 1/4 

B 1 

1/4 

1/2 

3/4 

1/2 

 

1 ÷ 1/2 

1/4 ÷ 1/2 

1/2 ÷ 1/2 

3/4 ÷ 1/2 

C 1 

1/4 

1/2 

3/4 

3/4 

 

1 ÷ 3/4 

1/4 ÷ 3/4 

1/2 ÷ 3/4 

3/4 ÷ 3/4 
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For part A and B (as depicted in Table 2), the students managed to understand and solve the 

problems quickly since the filled box represents a unit fraction which lead the students to use the 

repeated addition strategy (Figure 13). The problems in part C include non-unit fractions as the divisor. 

As a result, the former strategy is not applicable and the students are required to understand the unit 

and remainder. Although the problems are more complicated than the previous problems, the students' 

experiences of working with part A and B seemed quite helpful in determining how to fill the box with 

one given cake. However, the students remained unable to determine the symbolic representations and 

how it relates to the problem-context.  

 

 

 

 

 

 

Figure 13. Students’ works for revised unit rate problems (1/2 ÷ 1/4) 
 

The third teaching experiment reveals some new findings: (1) the whole number partitive division 

seems to be a good conceptual base to understand fair-sharing-division tasks involving fractions as 

divisors. Understanding how to divide 6 chocolates equally to 3 children will help students thinking 

about how to share 5/6 of a chocolate equally to 5 friends; (2) the use of context-related graphical 

representations supports the students’ in using self-developed representations; (3) the sequence of 

fractions plays an essential role in helping the students understanding tasks with PFD as shown in non-

unit rate problems and revised unit problems. This means that at the early stages of instruction working 

with problem-contexts with fractions like 5/6 ÷ 5 is easier than 4/7 ÷ 2 or 1/2 ÷ 3 and 2/3 ÷ 3. Similarly, 

directly dealing with 3/4 ÷ 1/4 in a unit rate context is more difficult than a sequence as shown in Table 

2; (4) unit rate problems pose a higher level of difficulty for primary students in terms of connecting it 

to fraction division problems (symbolic representations) and working with graphical representations 

compared to non-unit rate problems. We confirm the finding that unit rate should be considered as the 

different conceptualization from PFD (Sinicrope et al., 2002); (5) the students were able to understand 

the non-unit rate problems by using graphical representations to solve the problems, determining the 

number sentences appropriate to the problem context, and linking number sentences with developed 

graphical representations. However, with revised unit rate problems in the third cycle of our teaching 

experiments, the students could only solve the problems using graphical representations.   

The results of the three cycles of teaching experiments in partitive division with fractions 

consisted of three main findings: (1) the context of the task, the relation of the context to the used 

graphical representations, and the sequence of fractions used support the students’ understanding of 

PFD; (2) the students’ developed understanding in non-unit rate problems seems not to be supportive 

Answer: 4/2  2 cakes … Translation: kue (cake) 
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for solving unit rate problems; and (3) the students are incapable of determining symbolic 

representations from unit rate problems and linking the problems to fraction division problems. Drawing 

from our findings, the following design principle (van den Akker, 1999; Bakker, 2018) can be 

formulated to support students’ understanding of PFD: 
 

Given that the students have no experience in contextual problems and graphical 

representations in their prior learning trajectories of fraction and if they instead focused the 

operational and procedural aspect of learning mathematics, then following aspects should be 

considered in planning a teaching-and-learning-environment to support the students’ 

conceptual understanding: (1) Starting from whole number partitive division to develop the 

sense of fair-sharing or partitive division, (2) strengthening the concept of unit in fraction and 

partitioning to help the students in determining the unit as well as the remainder, (3) choosing 

appropriate contexts as well as related graphical representations, and (4) sequencing the 

fractions used, from a simple to advanced form being adjusted to the context. 
 

Although further research seems necessary, these initial findings should be discussed with mathematics 

educators and teachers, who intend to design mathematics activity involving PFD.  

It is argued that the use of students' familiar contexts and graphical representations is a viable 

starting point for the learning process. A familiar context is a context embedded in the mathematics 

tasks (contextual problems) which is accessible mentally or psychically by the students to help them 

solve the tasks, for example drawing graphical representations. Gravemeijer and Doorman (1999) argue 

that contextual problems are an important starting point in RME since they function as anchoring points 

for a guided reinvention of mathematics. Several other studies reveal that the didactical use of graphical 

representations helps the students construct mathematical meaning (van den Heuvel-Panhuizen, 2003; 

Cramer, Wyberg, & Leavitt, 2008; Cramer et al., 2010; Wahyu, Amin, & Lukito, 2017). One of the 

criteria to select the contexts is its potential to be modelled with graphical representations (Fosnot & 

Dolk, 2002). We argue that the extent to which the contexts are accessible or familiar to the students 

depends on the students' daily experiences. For example, we decided to employ the time context in the 

early design of the problems since it is a typical daily context being used in prior study (Muchsin et al., 

2014). However, the students were struggling with the representation of the ‘hour’ in the first teaching 

experiments although being familiar with the time-context, which we assume may be connected to the 

fact that ‘3/4 hour’ cannot be represented well by the area model nor a set of objects. In contrast, when 

given a cake context, the students 'by default' drew a rectangle to represent 5/6 of a chocolate. Our 

conclusion is that in order to successfully model the problem-contexts, the contexts should be familiar 

to the students as well as be related to specific graphical representations.      

Beside of the context-related graphical representations, the sequence of fractions used does seem to 

matter in supporting students’ understanding (Gregg & Gregg, 2007; Schwartz, 2008; van de Walle, Karp, & 

Bay-Williams, 2015). The fractions introduced in the primary schools are sequenced, for example at first unit 
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fractions are taught in the lower grade (grade 3) and then followed by non-unit fractions (NCTM, 2000; 

Common Core State Standards Initiative). In the first teaching experiment, problem-contexts involving 5/6 ÷ 

5 were easier to solve than 3/4 ÷ 5. Two of the fractions used in the teaching experiment, 5/10 ÷ 5 and 3/4 ÷ 5, 

seem to require distinct approaches from students even though they have the same task contexts. In the last 

teaching experiment, we re-arranged the sequence. A legitimate quest might be, why 5/6 ÷ 5 is introduced at 

the beginning and then followed by the task 1/2 ÷ 3, which include unit fraction. We observed that when using 

graphical representations to solve 5/6 ÷ 5, the students could directly determine the size of each group since the 

numerator is divisible by the divisor (Figure 11.a). Thus, it seems appropriate to use these fractions as the 

starting point in the learning process. In contrast, solving 1/2 ÷ 3 by using graphical representations seemed to 

require the partition of 1/2 in order to relate with the divisor (Figure 11.b). Table 2 presents the sequence of 

fractions for the unit rate, which significantly differs from the fractions used in the second lesson if compared 

to the last teaching experiment. Drawing from the findings of the current study, prior relevant studies (Gregg 

& Gregg, 2007; Wahyu et al., 2017), and theoretical considerations (Schwartz, 2008; van de Walle et al., 2015), 

sequencing fractions seems very important to support students' understanding of fraction operations in general 

and PFD in specific. Other studies did not examine the sequence of fractions, but they provided fruitful insights 

concerning students’ works through problem-context on PFD (Muchsin et al., 2014; Roni, Zulkardi, & Putri, 

2017; Rianasari & Julie, 2018). Thus, a further study is required to examine whether the use of sequenced 

fractions correlates to the effectivity of teaching and learning fractions operations.   

It is characteristic of partitive division that the number of groups is known, but the size of each group 

must be determined (Gregg & Gregg, 2007). A typical partitive fraction division is a/b ÷ c, either c divides a 

or not (Sinicrope et al., 2002; Adu-Gyamfi et al., 2019). It occurs to be problematic for the learners if the divisor 

is not a whole number in a fair-sharing context. However, Ott et al. (1991) argue that determining the size of 

one group or set is equivalent to calculating the unit rate. Likewise, the partitive division can be perceived as 

determining the unit value (quantity per one unit), the divisors being a whole number or not (Okazaki & 

Koyama, 2005 cited Vergnaud, 1983). Regardless of the normative difference of PFD conceptualization 

derived from a theoretical viewpoint, comparing the way students understand unit rate and non-unit rate 

problems from a descriptive point of view as it is done in this study can help to understand the individual 

notions of understanding partitive fraction division. On the one side, for example in problem 3.5 (Table 1), 

episodic situations (Staub & Reusser, 1995) could help to comprehend the way students construct a 

mathematics problem model or number sentences regarding the operation 2/3÷3. On the other side, for example 

in problem 3.6.b (Table 1), the students could not even find a textbase (Kintsch & Greeno, 1985) to reach text 

comprehension as a basis to the episodic situation, and thus could not construct a problem model (Staub & 

Reusser, 1995). We argue that the students are capable of solving the problem 3.6.b by using the strategy of 

the addition or multiplication of fractions since more chocolate is needed to fill up the whole cake box. Future 

studies are undoubtedly required to identify whether or not this gap is purely the issue of students’ ability in 

working on both problems rather than different fractions which seem to hinder students’ connection of fair-

sharing to the unit rate. 

http://www.corestandards.org/Math/Content/3/NF/
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There are several limitations to the current study. Firstly, although we attempted to sequence the 

fractions in the problem-context, not all types of fractions are covered, such as a mixed number (2 3/4), in fair-

sharing. For this reason, this study does not provide insights into how students solve the partition-problem of 

mixed numbers to determine the size of one group. Secondly, the current study was focused on encouraging 

the use of graphical representations to solve the problem-context, so it did not provide opportunities for students 

to solve the problems employing other strategies such as formal algorithm as we found in the problem 2.3 of 

the second experiment. These two cases could be an essential entry for future studies.     

   

CONCLUSION  

This article explicates primary students’ understanding of partitive division with fractions and proposes 

design principles to promote their understanding. Students’ understanding seemed to be linked to three criteria; 

using graphical representations to solve mathematical problems, determining symbolic representations, and 

linking graphical representation-based solutions of the problem-context with the symbolic representations. The 

three aspects could be reconstructed in the students’ solutions for the non-unit rate problems, but the latter two 

criteria could not be reconstructed in the learning trajectories for the unit rate problems. Furthermore, the 

teaching experiment revealed that students' understanding of fair-sharing is not helpful in understanding the 

unit rate (further research is needed to confirm this observation). Students’ understanding of fair-sharing and 

fraction division as well as unit rate problems seems to be supported by the use of context-related graphical 

representation and sequenced fractions.  

The current study resulted in developing four important design principles for the instruction of partitive 

fraction division, namely begin with partitive division with whole numbers to develop a basic conceptual 

understanding of the fair-sharing, re-introduce and reinforce the concept of unit and partition of fractions, utilize 

context-related graphical representations, and carefully sequence the fractions. A further teaching experiment 

is required to try out the design principles with the developed problem-contexts for PFD.   
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