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Abstract. Spatial reasoning has been known to have a solid connection to mathematics achievement and the mental 

mechanism underlying embodied mathematics. However, how spatial reasoning mediates the process of mathematising 

mathematical ideas is still being investigated. Therefore, this article aims to elaborate on using number lines as a spatial 

tool to promote spatial reasoning and mathematical understanding. The case is discussed from the perspective of the 

embodied cognition theory and the instrumentation theory. Based on the theories, the idea of spatialised instrumentation is 

promoted to explain the nature of spatial reasoning in promoting embodied mathematics learning through spatial learning 

tools. Under spatialised instrumentation, it is argued that spatial learning tools such as number lines can be used to promote 

meaningful embodied mathematical experiences involving spatial reasoning that potentially foster the development of 

mathematical understanding. This finding contributes to the effort of spatialising mathematic learning. 

INTRODUCTION 

     Spatial reasoning is the reasoning that helps in processing space-related information [1]. Spatial reasoning is 

categorised into three cognitive processes: spatial imagination, spatial interpretation, and spatial representation [2, 3]. 

Spatial imagination relates to the ability to see or visualise what is said or stated. Spatial interpretation refers to the 

ability to see or understand what is drawn or seen. Meanwhile, spatial representation is the ability to draw or symbolise 

what is seen, visualised, or said. The constructs of spatial reasoning can be classified into four categories such as 

spatial visualisation [4-6], spatial orientation [5, 7, 8], spatial structuring [9-12] and mental rotation [8, 13, 14]. Spatial 

visualisation refers to the ability to manipulate or transform spatially presented information, such as creating, 

interpreting, using and reflecting upon pictures, images or diagrams in minds, on paper, or with technological tools to 

describe or communicate information, thinking or developing ideas, and advancing understandings [4, 6]. Spatial 

orientation (also referred to as spatial perception [4] or perspective-taking [12]) is the ability to perceive or imagine 

movement or appearance in space from other locations or perspectives [4, 12]. Meanwhile, spatial structuring is the 

ability involving the mental process of constructing a spatial organisation of an object or set of objects that reflect the 

conception of the spatial nature of the object such as recognising its parts, combining the parts into spatial composites, 

and establishing spatial interrelationships between and among the parts and the composites [9]. Finally, mental rotation 

is the ability to mentally rotate an object and imagine the spatial information of the object in different positions as the 

result of the rotation [8]. 

Spatial reasoning plays a critical role in mathematics education for at least two reasons. First, spatial reasoning has 

been known to have a solid connection to mathematics competency, especially in arithmetic [5, 15-19]. For example, 

spatial skills predict kindergarten students’ knowledge of numbers and arithmetic proficiency [5]. Spatial skills also 

significantly determine proficiency in dealing with a calculation involving symbolic numbers [15]. Moreover, spatial 
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skills are the predictor of early-grade students’ use of higher-level arithmetic strategies [18]. Second, spatial reasoning 

relates to the notion of embodied cognition, where mathematical ideas are embodied in nature [20-22]. Embodied 

cognition is a theory that highlights that human knowledge or understanding is influenced and shaped by their physical 

experiences with their environment [20, 21, 23]. Human knowledge of numbers, for example, is formed through the 

interactions between human perceptions and their physical experiences of counting, pointing, or measuring [21]. In 

the embodied instrumentation theory, sensorimotor experiences in a digital environment involve spatial reasoning in 

promoting mathematical understanding [24]. Moreover, sensory and motoric experiences that are highly spatial in 

nature influence children’s perceptions during the process of constructing mathematical ideas [22, 25-27].   

Thus, spatial reasoning is significant in mathematics learning. It implies that mathematics classrooms should 

promote or encourage students to utilize their spatial reasoning as the means to conceptualize the abstract ideas of 

mathematics. Several studies have investigated the benefit of integrating spatial reasoning in mathematics learning 

[see 1, 28]. However, there are many questions that are unanswered yet that are looking for future studies, for example, 

how spatial reasoning can be used to foster mathematical understanding [29].  

Therefore, this article elaborates on how spatial reasoning can be promoted through spatial tools to mediate 

mathematical understanding. The discussion of this article is focused on the use of a spatial tool namely number line 

to foster mathematical understanding. The elaboration is divided into three sections. Firstly, the didactical use of 

number line in mediating students’ thinking and reasoning of numbers is presented. Then, the didactical use is 

discussed from two perspectives, namely the instrumentation theory and the embodied cognition theory. Then, the 

idea of spatialised instrumentation is promoted to explain the nature of spatial reasoning in promoting embodied 

mathematics learning through spatial learning tools. It is argued that spatial learning tools, such as number lines, can 

be used to promote meaningful embodied mathematical experiences involving spatial reasoning that potentially foster 

the development of mathematical understanding. 

THE DIDACTICAL USE OF NUMBER LINE 

     Number line is an example of a spatial tool that represents numbers horizontally or vertically showing the 

magnitude of numbers. Number line shows a strong connection between space and numbers. Psychophysical studies, 

for example, highlight that number line becomes the mental spatial analogy to visualize the magnitude of numbers in 

space where numbers are spatially represented alongside a horizontal line [30]. 

Moreover, educational studies show the effectiveness of number line as a concrete and mental tool to contextualize 

the abstract ideas of numbers into observable objects that allow students to explore the structures and the relationship 

of numbers [see 31, 32]. For example, the number line is a powerful spatial tool to help students developing meaningful 

counting strategies and enhance mental computation [31]. 

   

 

FIGURE 1. Number card string, bead-string number line, empty number line, and double number line. 

 

The use of number line for didactical purposes can be presented in many shapes or forms depending upon the 

targeted mathematical ideas and students’ cognitive level [32]. It can be presented as a string of number cards in the 

early grades to introduce the sequence of numbers. The bead-string number line can be used to promote the magnitude 

or the size of numbers. It also can be presented in the form of an empty number line to foster students’ number sense, 

structure, and relationships of numbers. Even fractions can be illustrated through double number lines where one side 

of the line stands for the unit of reference, and the other side indicates the fractions. 
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The Magnitude and the Cardinality of Numbers 

     Students who have lack understanding of the magnitude or the cardinality of numbers may consider 12 and 21 are 

identical as both numbers are made up from the same numbers, namely 1 and 2. In the context of natural numbers, the 

magnitude of a number can be defined as the distance of a number from 0. For example, the magnitude of the number 

5 is five because the distance of the number from 0 is 5. In this context, the magnitude of a number also shows the 

cardinality of a number, that a number represents ‘how many things’. Here, the number 5 not only defines the distance 

from 0 (the magnitude) but also represents the number of objects (the cardinality), such as 5 books, 5 oranges, or 5 

students. Understanding the magnitude and cardinality of numbers is crucial in early mathematics. It helps students 

compare the quantity of objects presented in numbers and provides an opportunity for them to explore and understand 

the relations among numbers which contribute to the development of the number sense. Subitizing is the central idea 

in understanding both the magnitude and the cardinality of numbers. Subitizing is the idea that a number is constructed 

from some smaller numbers, but it can be regarded as a whole. For example, six 1s or three 2s can be regarded as a 

whole 6. It is the foundation for students to recognize the composition of numbers which contributes to students’ sense 

of numbers (recognizing the relations of numbers). 

How those big ideas can be promoted to students meaningfully and constructively? Bead-string number line is a 

powerful spatial representation of numbers that helps students visualize the abstract ideas of both the magnitude and 

the cardinality of numbers. It can be presented based on 5 or 10 beads depending on the targeted mathematical ideas 

and students’ cognitive level (see Figure 2). Five-based bead-string number line allows students to easily see the 

multiple or the group of five, such as two 5s is 10 or four 5s is 20. Meanwhile, a ten-based bead-string number line 

may be more appropriate to explore the concepts of tens and the multiple or the group of tens, for example, two 10s 

is 20 or three 10s is 30. 

 

 

FIGURE 2. Five and ten-based bead-string number line. 

 

In the bead-string number line, the numbers are spatially arranged based on fives or tens starting from smaller 

numbers on the left and greater numbers on the right. It helps students to compare two numbers by identifying the 

distance of the numbers from 0 (the magnitude of the numbers) or by identifying the number of beads represented by 

the numbers (the cardinality of the numbers). For example, in identifying the number of beads represented 12 and 21, 

by using the five structures, the students may see 12 beads as two groups of 5 beads and 2 beads (2×5 + 2), meanwhile, 

21 beads as four groups of 5 beads and 1 bead (4×5 + 1). It is obvious that four groups of 5 beads are more than two 

groups of 5 beads. Therefore, 12 and 21 must be two different numbers. How 12 is different from 21? The spatial 

visualization of the five-based number line suggests that 21 is on the right side of 12 as far as 3+5+1 beads, which is 

9 beads. Therefore, the difference between 12 and 21 is that 21 is greater than 12 as many as 9 units. 

 

FIGURE 3. Spatial visualization of number line suggests various approaches to see the difference between 12 and 21. 
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The difference between 12 and 21 can also be articulated in the question, “how many beads that I need to add to 

12 beads to get 21 beads?” The spatial visualization of the bead-string number line suggests that we need to add 9 

more beads (i.e., 4 blue beads and 5 red beads) to the 12 beads to reach 21 beads (see Figure 3). Moreover, students 

with a higher understanding can visualize the difference through the empty number line where to go 21 from 12, they 

may add 8 to 12 to get 20 and then add 1 to 20 to get 21. Here, the spatial visualization of the number line suggests 

the students to consider the ten-based structure presented in the number line (see Figure 3). 

Students can easily show the differences between two numbers by having a mental spatial model of the magnitudes 

of numbers in the form of lines. For example, in differentiating between 29 and 35, the student can visualize a mental 

number line in their mind and see that adding 1 to 29 will lead to 30, and then adding 5 to 30 leads to 35. Therefore, 

the difference between 29 and 35 is 6 where 35 is greater than 29.   

The examples above show that the spatial characteristics within the number line, such as the distance from 0 (zero) 

and the left-right arrangement of numbers, promote students to construct a spatial analogy of the magnitudes and the 

cardinality of numbers and use the analogy to explore and describe the relations among numbers. The spatial analogy 

refers to the use of spatial relationships (e.g., line) to explain the relationships of non-spatial ideas (e.g., the magnitude 

of numbers). Here, the spatial analogy scaffolds students to think, explore, and describe the relationships of the abstract 

ideas of the magnitude and the cardinality of numbers.  

The Magnitude and the Cardinality of Numbers 

     The spatial analogy of numbers in the form of a number line provides scaffolding for students to think, develop 

and communicate their own counting strategies. Understanding the magnitude of numbers, the problem, such as 34 + 

26, can be visualized on the mental number line as adding 26 beads to 34 beads (see Figure 4). The spatial visualization 

triggers students to think of numbers between 34 and the question mark, which help them determine the question 

mark's magnitude. This suggests students split 26 into some parts that would be easier to add to 34, for example, 

splitting 26 into 10+10+6, 6+10+10, 20+6, or 6+20. The choice of the splitting is determined by the characteristics of 

the numbers being operated. For example, it would be easier to split 20 into 6+20, rather than 7+19, since it is simpler 

to add 34+6+20 (i.e., 40+20) rather than 34+7+19 (i.e.,41+19) due to the underlying ten-based structure. The various 

ways of splitting 26 allow students to imagine various strategies to solve 34+26. 

 

FIGURE 4. Decomposition strategies to solve 34+26 on the number line. 

 

The experiences of splitting will lead students to invent the decomposition method in dealing with addition. The 

decomposition method is a counting strategy in that numbers are split or decomposed into their compositions such 
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that it would be easier to recompose. For example, through the number line visualizations, students could invent mental 

imagination that 34+26 can be seen as 34+6+20 (split and counting on) or as 30+20+4+6 (split tens and ones) [33]. 

In the context of subtraction, the spatial analogy of numbers on number line scaffolds students to invent and 

understand the constant difference principle [31] that other subtractions can be generated from a subtraction by 

omitting or adding the same amount of number in both minuend and subtrahend to preserve the difference. For 

example, 67 – 43 equals 47 – 23 since 20 is taken from both 67 and 43 resulting in 47 and 23, respectively. 

Understanding the constant difference principle helps simplify subtractions involving complex numbers. For instance, 

397 – 179 can be transformed into other equal subtractions by gradually omitting the same number on both the 

minuend and the subtrahend. For example, omitting 100 from 397 – 179 leads to 297 – 79, then omitting 7 leads to 

290 – 72, then omitting 70 leads to 220 – 2. Therefore, solving 397 – 179 can be done by solving easier subtractions, 

such as 220 – 2. Moreover, adding and omitting numbers could provide a powerful shortcut to solve subtraction. For 

example, 359 – 297 can be viewed as 162 – 100 by adding 3 and then omitting 200. 

 

 

 

FIGURE 5. Constant difference strategies to solve 47 – 23 on the number line. 

 

The power of the constant difference principle can be promoted to students constructively and meaningfully by 

exploring the number line. Consider the subtraction 47 – 23. Understanding the magnitude of numbers, 47 – 23 can 

be visually defined on the number line as the distance between 23 and 47 (see Figure 5). The student can then be asked 

to shift one number (either minuend or the subtrahend) to their preferences and think of how the other number should 

be shifted to preserve the difference. Suppose 23 is shifted backward to 20 (omitting 3 from 23). To keep the 

difference, 47 should be shifted backward as far as 3 reaching 44. Therefore, 47 – 23 can be seen as 44 – 20 which is 

easier to be solved. Moreover, 47 – 23 can be viewed as 50 – 26 by shifting the numbers forward as far as 3 units. If 

the difference is visualized as a bar, the shifting can be regarded as moving the bar forward or backward to be adjusted 

with the familiar numbers (see Figure 6). 

 

FIGURE 6. Constant difference strategies are illustrated as moving a mental bar to familiar numbers. 

020021-5

D
ow

nloaded from
 http://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/5.0099540/16210153/020021_1_online.pdf



The examples illustrated above show how number lines could interact with students during knowledge construction 

about numbers. The properties of numbers line, such as their spatial representations, supply perceptions to students’ 

minds where such perceptions trigger students to act (e.g., drawing arrows on the number line when adding or 

identifying the familiar closest numbers). The continuous interplay between the spatial perceptions supplied by the 

number line and the related actions contribute to knowledge constructions. The term “spatialized instrumentations” is 

proposed to explain such phenomena. It is based on the embodied cognition theory and the instrumentation theory, 

which are elaborated on in the following sections. 

NUMBER LINE, SPATIAL REASONING, AND EMBODIED COGNITION 

     Generally, spatial reasoning defines our ability to deal with space. This reasoning can be categorised into three 

types, namely spatial imagination, spatial interpretation, and spatial representation [2, 3]. Spatial imagination relates 

to the ability to visualise what is said or stated verbally. Spatial interpretation refers to the ability to understand what 

is drawn or seen. Meanwhile, spatial representation is the ability to draw what is seen, visualised, or said.  

Spatial reasoning is naturally embodied [22]. It implies that spatial reasoning involves a bodily engagement in 

dealing with space where the potentials of our body, such as sensory and motoric skills, are utilised in making sense 

of our spatial world. Therefore, spatial reasoning is strongly related to the concept of embodied cognition, a concept 

highlighting the strong connection between the human body, mind, and environment in knowledge construction (see 

Figure 7).  

The basic claim of embodied cognition is that our knowledge or mind is shaped by the experience of our body 

within the environment [25, 34]. According to Piaget, knowledge is constructed through the process of assimilation 

and accommodation [35]. Assimilation refers to the process of adjusting new information within the existing 

knowledge. Meanwhile, accommodation is the process of replacing the pre-existing knowledge as new relevant 

knowledge is accommodated. One of the prominent causes of assimilation and accommodation is our physical 

interactions with our environment. The interactions involve our sensory and motoric experiences (sensorimotor 

experiences), which are facilitated by the affordances of our body and environment. 

 

 

FIGURE 7. Embodied cognition: the interactions between mind, body, and environment in knowledge construction. 

 

In the context of mathematics, although they are highly abstract, mathematical concepts are acknowledged to be 

rooted in sensorimotor experiences [20, 21, 24, 36]. Therefore, it is embodied in nature. It can be seen from the facts 

that human understanding of numbers is constructed through the interactions between the human mind and their 

physical experience of counting, measuring, and pointing [21]. In addition, our knowledge of the mathematical ideas 

in geometry is shaped by our physical interactions with geometrical objects in our environment [37]. This evidence 

highlights that our mathematical understanding is not only the product of our mind but also influenced by our physical 

interactions with our environment [20, 23].  Here, our knowledge and understanding on some level are conditioned 

by our body’s capabilities and constraints in interacting with our environment [36].  

How is the number line related to embodied cognition? As spatial reasoning is embodied in nature [22], spatial 

reasoning could be used as the mediator to explain the embodied nature of the number line. Once students are working 

with a number line, the potential of their sensory and motoric skills are stimulated due to the visual and motoric 

properties of the number line. The visual properties of a number line refer to the visual linear representation of numbers 

on a line. The representation could reveal and trigger students to think about the relation of various mathematical ideas 

simultaneously, such as the sequence, the magnitude and the cardinality of numbers. Meanwhile, the motoric 
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properties of the number line refer to the affordances of the number line to involve physical actions, such as drawing 

an arrow or pointing a point on the line, to represent or express mathematical thinking or reasoning (see Figure 4).  

Here, the sensory and motoric properties of the number line trigger the potentials of our physical body (i.e., sensory 

and motoric skills) to gain sensory and motoric experiences produced by the number line, which contribute to the 

creation of perceptions in our mind about the experiences (see Figure 8). The created perceptions then shape or 

influence how we react (actions) towards or work with the number line. These actions are classified into types. The 

first is the actions that our mind gives to our body which are unobservable (mental actions). The second is the actions 

of our body toward the tools, which are relatively observable (observable actions).  

The reciprocal relationship between the perceptions and actions involving the potential of our body forms 

perception-action loops (see the dark blue arrows in Figure 8). Here, the sensory and motoric skills of our body, which 

naturally involve spatial reasoning together with the number line supply perceptions in our mind, and then based on 

the perceptions, our mind gives reaction resulting in the perception-action loops which contribute to knowledge 

construction [25]. Once the perceptions of the properties of an object, such as number line, are created or crystallised 

in our mind, we could use the perceptions to imagine the object and mentally react on the object without physically 

engaging with the object. This condition creates mental perception-action loops (see the light blue arrows in Figure 

8). 

 

FIGURE 8. The role of the body in knowledge construction. 

 

Thus, regarding perception-action loops created by working on a number line, knowledge construction of numbers 

can be effectively facilitated through number line exploration. It provides students with numerous embodied 

experiences involving spatial reasoning, sensory, and motoric experiences that help them experience mathematical 

ideas meaningfully. Thom, D'Amour [22] call such a spatial experience embodied mathematics. In this article, the 

term “spatialized instrumentation” is introduced to express the idea that is relevant to embodied mathematics by 

focusing on the role of spatial reasoning generated from the embodied experiences with spatial tools in knowledge 

construction. The following section elaborates on the notion of spatialized instrumentation about the number line. 

NUMBER LINE AND SPATIALISED INSTRUMENTATION 

Regarding the critical role of spatial reasoning in knowledge constructions under the embodied cognition theory 

[22], the notion of spatialized instrumentation is proposed referring to the idea that knowledge construction can be 

facilitated through designed spatial tools or experiences that produce spatial reasoning, sensory, and motoric 

experiences. Besides the embodied cognition theory, the spatialized instrumentation is based on the notion of the 

instrumentation theory, a concept explaining the interactions between learning tools and users during knowledge 

construction.  

The central idea of the instrumentation theory is the argument that the affordance of a learning tool influences the 

construction of the knowledge of its users. At the same time, the users’ pre-existing knowledge affects how the tool 

is utilized as an instrument [24-27]. The reciprocal relationship between tools and users is defined by two mechanisms 

called instrumentalization and instrumentation (see Figure 9). The instrumentalization defines the mechanism by 

which users’ pre-existing knowledge influences the way a learning tool is used. Meanwhile, instrumentation refers to 

the idea that the affordances of learning tools shape users’ knowledge. During the instrumentalization, the influence 

of users’ pre-existing knowledge toward the learning tool is operationalized through actions. For example, students 

draw an arrow to express a jump when doing addition on number line. Meanwhile, during the instrumentation, the 

properties of the learning tool supply perceptions about the tool. For example, as students look at the locations of tow 

numbers on a number line, they realize that there may be many other numbers between the two numbers, such as 
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number 20 or 21 between 18 and 24 (see Figure 10). The perception and action form a reciprocal relationship where 

learning tools supply perceptions to our mind, and our mind reacts based on the perceptions. The reciprocal 

relationship between perceptions and actions can be described as perception-action loops that contribute to knowledge 

construction [25].   

Furthermore, the human body could also be regarded as a learning tool on its own as our body is not part of our 

mind, and our mind could give actions (instructions) to our body to do our intended actions. Therefore, our bodily 

experiences with a learning tool supply perceptions to our mind and, at the same time, the created perceptions promote 

reactions toward our body and the learning tool. Here, the body and the tool are regarded as learning tools that supply 

perceptions to our minds. The interplay between perceptions and actions involving our body in the process of 

knowledge construction is called embodied instrumentation [24, 25].  

Knowledge construction occurs as the result of the interplay between actions and perceptions during 

instrumentalization and instrumentation. Regarding the interplay, instrumentation theory suggests the importance of 

selecting or designing appropriate learning tools to target the construction of the intended knowledge or understanding. 

For example, if we intend to build students’ understanding of subtraction as the difference between minuend and 

subtrahend, learning tools that could effectively promote such understanding is necessary to be designed or selected. 

 

 

FIGURE 9. perception-action loops in the instrumentation and the instrumentalization. 

 

How could number line construct students’ knowledge according to the instrumentation theory? Given the 

examples of the didactical use of number line in the previous section, it is obvious that number line plays a critical 

role as a learning tool that mediates students’ knowledge construction of numbers. The representation of number line 

triggers and simultaneously allows students to express their thinking and reasoning. It helps students to make sense of 

their thinking and reasoning. Here, the number line transforms the abstract meaning of mathematical ideas (e.g., the 

concepts of numbers) into imaginable and visible ideas (e.g., numbers as line segments or distance), therefore, it is 

relatively accessible for students to think and reason with. Furthermore, a number line could become a mental model 

or a mental analogy of numbers that allows us to think about numbers without physically engaging with concrete 

representations.  

Number lines could shape the construction of students’ knowledge of numbers because of their spatial properties, 

namely their visual and motoric properties. The visual properties refer to the visual representation of numbers on a 

number line where the way the numbers are presented reveals various mathematical ideas simultaneously, such as the 

sequence of numbers, the magnitude, the cardinality, and their relationships. Meanwhile, the motoric properties refer 

to the affordances of the number line to involve physical actions, such as drawing an arrow, to represent or express 

mathematical reasoning or ideas.    

How the two properties contribute to the process of instrumentalization and instrumentation? To answer this 

question, consider the following problem, 24 – 18 = ?. The number line presentation of the problem creates the 

perception that 24 – 18 is the distance between 18 and 24 (see Figure 10). The perception, then, contributes to several 

mathematical actions to find the distance. One possible action could be adding a line segment on18 to make 18 equal 

24. The length of the added line segment would be 6 because 18+6 is 24. Therefore, 24 – 18 is 6. The other possible 

action could be removing a part of the line segment and constructing 24 to make 24 equal 18. The length of the 

removed line segment is the solution for 24 – 18 which is 6. As the students try to actualize the action of adding and 

removing, they could draw arrows to show or track their thinking. This example shows that the experiences of working 

on the number line could construct students’ knowledge of subtraction, such as the subtraction of two numbers is the 

distance between the two numbers and the distance could be a number that makes minuend and subtrahend equal if it 
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is added on the subtrahend or removed from the minuend. The knowledge can be presented mathematically as p – q = 

s if q + s = p or p – s = p. 

 

FIGURE 10. The spatial representations of defining and solving 24 – 18 on a number line. 

 

The example above shows us that the properties or the affordances of a spatial tool, such as a number line, supply 

spatial perceptions to our minds about the tool (see Figure 11). The perceptions are acquired by the potential of our 

body to access the spatial properties of the tool through our sensory and motoric skills (see the dark blue arrows in 

Figure 11). The acquired spatial perceptions are then processed in our mind to be related, assimilated or accommodated 

with the relevant pre-existing knowledge. This process generates our knowledge about the ideas underlying or 

expressed through the tool. This knowledge then is used to give responses in the forms of actions where the actions 

are executed by the aids of our body’s sensory and motoric skills. Here, the sensory and motoric potentials of our body 

mediate the interplay between our mind and the tool through the perception-action loops during instrumentalization 

and instrumentation. As students continuously work with a spatial tool, it creates multiple related spatial perception-

action loops that contribute to the knowledge construction. 

Once the perceptions about the spatial tool have been crystalized in our minds, we could still gain perceptions from 

the tool without physically engaging with the tool (see the light blue arrows in Figure 11). Here, the tool becomes our 

mental model that helps us work with the tool in our mind to explore further the underlying mathematical ideas 

represented through the tool. This response is called a mental action. The crystalized perceptions about the tool and 

the mental actions generate mental spatial perception-action loops. Such loops could contribute to the construction of 

a spatial analogy of non-spatial ideas. For example, we could create a mental number line as an analogy to think about 

the relations of the magnitude of numbers or to solve computations. For instance, our mental number line suggests 

that 17+9 can be solved by taking 3 from 9 to be added to 17, resulting in 20 and adding the remaining 6 to 20, resulting 

in 26. Alternatively, since 9 is close to 10 on the number line, 17+9 can be seen as taking 1 from 17 to be added to 9 

resulting in 10 and then adding 10 and the remaining 16 which is 26.   

 

 

FIGURE 11. The mechanism underlying the spatialized instrumentation during knowledge construction. 
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Each spatial tool has its own spatial properties that could generate different spatial experiences and, consequently 

different spatial perception-action loops. In the context of multiplication, for example, the number line and array model 

expose different spatial experiences (see Figure 12). For instance, the number line representation of 3×4 suggests the 

multiplications as a distance created by adding 4 as many as 3 times. Meanwhile, array representation suggests 3×4 

as an area having 3 rows of units where each row has 4 units. Moreover, although both representations could trigger 

students to see multiplication as repeated addition, the array model is more suggestive in inciting students to see 

multiplications as equal grouping (e.g., 3 groups of 4) and the commutative principle of multiplication (e.g., 3×4 = 

4×3). As the spatial properties of the number line and array model are different, they might generate other spatial 

perception-action loops that contribute to different processes or forms of knowledge construction. This implies that 

spatial learning tools must be designed or selected purposively to meet the intended learning goals. 

 

 

FIGURE 12. Number line and array: Different spatial representations for 3×4. 

 

CONCLUSION 

This study can be considered an alternative approach to promoting spatial reasoning in mathematics learning. It is 

stimulated by the question of how spatial reasoning can be used to facilitate mathematics learning. Based on the 

embodied cognition and the instrumentation theory, the idea of spatialized instrumentation is introduced to explain 

the critical role of spatial reasoning in knowledge construction. It is conjectured that developing mathematical 

knowledge can be facilitated through designed spatial tools together with the attached learning tasks. The case of 

number line suggests that students could construct their mathematical understanding by exploring the properties of 

numbers through the spatial representation.  

The spatialized instrumentation views mind, body, and tool as an integrative system in knowledge construction 

through the reciprocal relationships of perception and action (perception-action loops). This idea might be related to 

the idea of the embodied mathematics [22] or the embodied instrumentation [25]. Both ideas suggest the importance 

of bodily experiences in knowledge constructions. However, the spatialized instrumentation highlights the critical role 

of spatial experiences in knowledge constructions where the experiences might be occurred bodily (physical 

engagement with tangible spatial learning tools) or mentally in our mind without physical engagement of our body 

(the mental spatial perception-action loops). The mental spatial experience is generated from the embodied spatial 

experience through concrete or tangible spatial tools, such as drawing number line.  

It is believed that each spatial experience may lead to a different form of spatial perception-action loops resulting 

different form of knowledge construction. For example, the number line and the array representation of multiplication 

could produce dissimilar spatial perceptions of multiplication and provoke slightly different conceptions of 

multiplication. Other than through spatial representations, spatial experiences can be exposed to students through other 

methods that generate spatial experiences, such as body-based tasks where students are asked to perform spatial tasks 

with their body based on the given instructions. Therefore, future research needs to investigate the spatial perception-

action loops of the various types of spatial experiences. For example, the study aims to investigate students’ knowledge 

as the result of using two different spatial experiences. 
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