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ABSTRACT

The idealization of neuronal pulses as δ-spikes is a convenient approach in neuroscience but can sometimes lead to erroneous conclusions.
We investigate the effect of a finite pulse width on the dynamics of balanced neuronal networks. In particular, we study two populations
of identical excitatory and inhibitory neurons in a random network of phase oscillators coupled through exponential pulses with different
widths. We consider three coupling functions inspired by leaky integrate-and-fire neurons with delay and type I phase-response curves. By
exploring the role of the pulse widths for different coupling strengths, we find a robust collective irregular dynamics, which collapses onto a
fully synchronous regime if the inhibitory pulses are sufficiently wider than the excitatory ones. The transition to synchrony is accompanied
by hysteretic phenomena (i.e., the co-existence of collective irregular and synchronous dynamics). Our numerical results are supported by
a detailed scaling and stability analysis of the fully synchronous solution. A conjectured first-order phase transition emerging for δ-spikes is
smoothed out for finite-width pulses.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0046691

Neuronal networks with a nearly balanced excitatory/inhibitory
activity evoke significant interest in neuroscience due to the
resulting emergence of strong fluctuations akin to those observed
in the resting state of the mammalian brain. While most studies
are limited to a δ-like pulse setup, much less is known about the
collective behavior in the presence of finite pulse widths. In this
paper, we investigate exponential pulses, with the goal of test-
ing the robustness of previously identified regimes such as the
spontaneous emergence of collective irregular dynamics (CID),
an instance of partial synchrony with a non-periodic macroscopic
dynamics. Moreover, the finite-width assumption paves the way
to the investigation of a new ingredient present in real neu-
ronal networks: the asymmetry between excitatory and inhibitory
pulses. Our numerical studies also confirm the emergence of CID
in the presence of finite pulse width, although with a couple of
warnings: (i) the amplitude of the collective fluctuations decreases
significantly when the pulse width is comparable to the inter-
spike interval and (ii) CID collapses onto a fully synchronous

regime when the inhibitory pulses are sufficiently longer than
the excitatory ones. Both restrictions are compatible with the
recorded behavior of real neurons. Additionally, we find that a
seemingly first-order phase transition to a (quasi)-synchronous
regime disappears in the presence of a finite width, confirm-
ing the peculiarity of the δ-spikes. A transition to synchrony is
instead observed when increasing the ratio between the width of
inhibitory and excitatory pulses: this transition is accompanied
by a hysteretic region, which shrinks upon increasing the net-
work size. Interestingly, for a connectivity comparable to that
of the mammalian brain, such a finite-size effect is still siz-
able. Our numerical studies might help to understand abnormal
synchronization in neurological disorders.

I. INTRODUCTION

Irregular firing activity is a robust phenomenon observed in
certain areas of the mammalian brain, such as hippocampus or
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cortical neurons.1,2 It plays a key role for the brain function in
the visual and prefrontal cortex. This behavior emerges from the
combined action of many interacting units.3,4

This paper focuses on a regime called collective irregular
dynamics (CID), which arises in networks of oscillators (neurons).
Mathematically, CID is a non-trivial form of partial synchrony.
Like partial synchrony, it means that the order parameter χ used
to identify synchronization (see Sec. II for a precise definition)
is strictly larger than 0 and smaller than 1. Moreover, it implies
a stochastic-like behavior of macroscopic observables such as the
average membrane potential.

There are (at least) two mechanisms leading to CID: (i) the
intrinsic infinite dimensionality of the nonlinear equations describ-
ing whole populations of oscillators and (ii) an imperfect balance
between excitatory and inhibitory activity.

Within the former framework, no truly complex collective
dynamics can arise in mean-field models of identical oscillators
of Kuramoto type. In fact, the Ott–Antonsen ansatz5 implies a
strong dimension reduction of the original equations. Nevertheless,
in this and similar contexts, CID can arise either in the presence
of a delayed feedback6 or when two interacting populations are
considered.7 Alternatively, it is sufficient to consider either ensem-
bles of heterogeneous oscillators: e.g., leaky integrate-and-fire (LIF)
neurons8 and pulse-coupled phase oscillators9 (notice that in these
cases, Ott-Antonsen ansatz does not apply).

Within the latter framework, an irregular activity was first
observed and described in networks of binary units as a conse-
quence of a (statistical) balance between excitation and inhibition.10

This balanced regime11 can be seen as an asynchronous state accom-
panied by statistical fluctuations. In fact, this interpretation led
Brunel12 to develop a powerful analytical method based on a self-
consistent Fokker–Planck equation to describe an ensemble of LIF
neurons. In the typical (sparse) setups considered in the litera-
ture, the fluctuations of the single-neuron activity vanish when
averaged over the whole population, testifying to their statistical
independence; in terms of order parameter, χ = 0.

However, it has been recently shown that a truly CID can be
observed in the presence of massive coupling (finite connectivity-
density) under the condition of small unbalance.13,14 In this paper,
we test the robustness of these results, obtained while dealing with
δ-pulses, by studying more realistic finite-width pulses. In fact, real
pulses have a small but finite width.15 Moreover, it has been shown
that the stability of some synchronous regimes of LIF neurons may
qualitatively change when arbitrarily short pulses are considered (in
the thermodynamic limit).16

A preliminary study has been published in Ref. 17, where the
authors have not performed any finite-size scaling analysis and,
more important, no test of the presence of CID has been carried out.
Here, we study a system composed of two populations of (identical)
excitatory and inhibitory neurons, which interact via exponential
pulses of different width, as it happens in real neurons.18

Handling pulses with a finite width require two additional
variables per single neuron in order to describe the evolution of
the incoming excitatory and inhibitory fields. The corresponding
mathematical setup has been recently studied in Ref. 19 with the
goal of determining the stability of the fully synchronous state in a
sparse network. The presence of two different pulse widths leads to

non-intuitive stability properties because the different time depen-
dence of the two pulses may change the excitatory/inhibitory char-
acter of the overall field perceived by each single neuron. Here, we
basically follow the same setup introduced in Ref. 19 with the main
difference of a massively coupled network to be able to perform a
comparative analysis of CID.

The randomness of the network accompanied by the pres-
ence of three variables per neuron makes an analytical treatment
quite challenging. For this reason, we limit ourselves to a numerical
analysis. However, we accompany our studies with a careful finite-
size scaling to extrapolate the behavior of more realistic (larger)
networks. Our first result is that CID is observed also in the pres-
ence of finite pulse width, although we also find a transition to full
synchrony when the inhibitory pulses are sufficiently longer than
excitatory ones. The transition is first-order (discontinuous) and is
accompanied by hysteresis: there exists a finite range of pulse widths
where CID and synchrony coexist.

The finite-size analysis suggests that in the thermodynamic
limit, CID is not stable when the pulses emitted by inhibitory neu-
rons are strictly longer than those emitted by the excitatory ones.
However, the convergence is rather slow, and we cannot exclude that
the asymmetry plays an important role in real neuronal networks of
finite size.

More precisely in Sec. II, we define the model, including the
phase-response curves (PRCs) used in our numerical simulation.
In the same section, we also introduce the tools and indicators
later used to characterize the dynamical regimes, notably an order
parameter to quantify the degree of synchronization.20 In Sec. III, we
present some results obtained for strictly δ pulses to test robustness
of CID in our context of coupled phase oscillators. In Sec. IV, we dis-
cuss the symmetric cases of identical finite pulse widths. Section V is
devoted to a thorough analysis of CID by varying the pulse widths.
Section VI contains a discussion of the transition region, intermedi-
ate between standard CID and full synchrony. In the same section,
the robustness of the transition region is analyzed by considering
different PRCs. Finally, Sec. VII is devoted to the conclusions and a
brief survey of the open problems.

II. MODEL

Our object of study is a network of N phase oscillators (also
referred to as neurons), the first Ne = bN being excitatory, the last
Ni = (1 − b)N inhibitory (obviously, Ne + Ni = N). Each neuron is
characterized by the phase-like variable 8j ≤ 1 (formally equivalent
to a membrane potential), while the (directed) synaptic connections
are represented by the connectivity matrix G with entries

Gj,k =
{

1 if k → j active,

0 otherwise,

where
∑Ne

k=1 Gj,k = Ke and
∑N

k=Ne+1 Gj,k = Ki, meaning that each
neuron j is characterized by the same number of incoming exci-
tatory and inhibitory connections, as customary assumed in the
literature21 (K = Ke + Ki represents the connectivity altogether).
Here, we assume that K is proportional to N, that is, K = cN; i.e., we
refer to massive connectivity. Furthermore, the network structure is
without autapse; i.e., Gj,j = 0.
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The evolution of the phase of both excitatory and inhibitory
neurons is ruled by the same equation,

8̇j = 1 +
µ

√
K

0
(

8j
) (

E j − I j
)

, (1)

where E j(I j) is the excitatory (inhibitory) field perceived by the
jth neuron, while 0(8) represents the phase-response curve (PRC)
assumed equal for all neurons; finally, µ is the coupling strength.
Whenever 8k reaches the threshold 8th = 1, it is reset to the value
8r = 0 and enters a refractory period tr during which it stands still
and is insensitive to the action of both fields. The fields E j and I j

are the linear superposition of exponential spikes emitted by the
upstream neurons. Mathematically,

Ė j = −α

(

E j −
∑

n

Gj,kPkδ(t − tk
n)

)

,

İ j = −β

(

I j − g
∑

n

Gj,k(1 − Pk)δ(t − tk
n)

)

,

(2)

where α (β) denotes the inverse pulse width of the excitatory
(inhibitory) spikes and tk

n is the emission time of the nth spike emit-
ted by the kth neuron. The coefficient g accounts for the relative
strength of inhibition compared to excitation. If the kth neuron is
excitatory, Pk = 1; otherwise, Pk = 0.

In the limit of α(β) → ∞ (δ-spikes), both fields can be
expressed as simple sums

E j =
∑

n

Gj,kPkδ(t − tk
n),

I j = g
∑

n

Gj,k(1 − Pk)δ(t − tk
n).

(3)

Let us now introduce the PRCs used later in our numerical
simulations. We consider three different shapes:

• PRC1

0(8j) =
{

(

8j − 8L

)

if 8L < 8j < 8U,

0 otherwise.
(4)

• PRC2

0(8j) =



























8j − 8L

0.5 − 8L

if 8L < 8j < 0.5,

1 −
(

8j − 0.5

8U − 0.5

)

if 0.5 < 8j < 8U,

0 otherwise.

(5)

• PRC3

0(8j) = sin2
(

π8j
)

. (6)

The various curves are plotted in Fig. 1. PRC1 (see the black
curve, which corresponds to 8L = −0.1 and 8U = 0.9) has been
introduced in Ref. 19 to study the stability of the synchronous
regime; its shape has been proposed to mimic a network of leaky
integrate-and-fire neurons in the presence of delay (see also Ref. 9).

The two other PRCs have been selected so as to explore the
effect of a progressive regularization of the neuronal response. In

FIG. 1. Example of the phase-response curves (PRCs): PRC1 with 8L = −0.1
and 8U = 0.9 (black line), PRC2 (red dashed line), and PRC3 (blue dashed and
dot line). The vertical dot line refers to the reset membrane potential (8r = 0).

particular, we consider the smooth PRC3 [see Eq. (6)] as a prototype
of type I PRC.22,23

The network dynamics is simulated by implementing the Euler
algorithm with a time step δt = 10−3. However, in some cases,
smaller steps have been considered to avoid spurious synchroniza-
tion. We typically initialize the phases uniformly in the unit interval,
while the fields are initially set equal to zero.

In all cases, we have set b = 0.8, c = 0.1, and g = 4 +
√

1000/K
(following the existing literature13). The last condition ensures that
the balanced regime is maintained for K, N → ∞. Moreover, we
have systematically explored the role of α and β , as the pulse width
is the focal point of this paper. Additionally, the coupling strength
µ has been varied, as well as the network size N, to test for the
amplitude of finite-size effects.

The following statistical quantities are used to characterize the
emerging dynamical states.

1. The mean firing rate is a widely used indicator to quantify the
neural activity. It is defined as

ν = lim
t→∞

1

tN

N
∑

j=1

Nj(t), (7)

where Nj(t) denotes the number of spikes emitted by the neuron
j over a time t.

2. The coefficient of variations Cv is a microscopic measure of
irregularity of the dynamics based on the fluctuations of the
interspike intervals (ISIs). The average Cv is defined as

〈Cv〉 =
1

N

N
∑

j=1

σj

τj

, (8)
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where σj is the standard deviation of the single-oscillator’s ISI
and τj is the corresponding mean ISI. If 〈Cv〉 > 1, then the neu-
rons show a bursting activity, while 〈Cv〉 < 1 means that the
spike train is relatively regular.

3. The order parameter, χ , is typically used to quantify the degree
of synchronization of a population of neurons.24 It is defined as

χ 2 ≡
〈8〉2 − 〈8〉2

〈82 − 8
2〉

, (9)

where 〈·〉 represents an ensemble average, while the over-bar is
a time average. The numerator is the variance of the ensem-
ble average 〈8〉, while the denominator is the ensemble mean
of the single-neuron’s variances. When all neurons behave in
exactly the same way (perfect synchronization), then χ = 1. If

instead, they are independent, then χ ≈ 1/
√

N. Regimes char-
acterized by intermediate finite values 0 < χ < 1 are referred
to as instances of partial synchronization. However, χ > 0 does
not necessarily imply that the collective dynamics is irregular:
it is, e.g., compatible with a periodic evolution. In fact, here,
we report several power spectra to testify the stochastic-like
dynamics of macroscopic (average) observables.

III. DELTA PULSE

Most spiking network models deal with δ-spikes, including
those giving rise to CID.13,14 This paper is focused on the more real-
istic exponential spikes, but before proceeding in that direction, we
wish to briefly discuss the case of zero pulse width. This is use-
ful to gauge the different PRCs used in this paper. Since δ pulses
correspond to the limiting case α, β → ∞, they can be treated by
invoking Eq. (3). Figure 2 shows the various indicators introduced
in Sec. II to characterize the collective dynamics. As in previous
papers,13,14 we explore the parameter space by varying the coupling
strength µ and the system size N.

In panel (c), we can appreciate that CID emerges already for
very small coupling strength; it is accompanied by an increas-
ing average coefficient of variations 〈Cv〉 due to the coupling that
induces increasing deviations from purely periodic behavior. In par-
allel, the mean firing rate ν decreases as a result of the prevalent
inhibitory character of the network. This weak-coupling emergence
of CID is comparable to what is observed in balanced LIF models
with δ spikes.13

Above µ ≈ 0.537 ≡ µc (see the vertical dashed lines), a tran-
sition occurs toward a highly synchronous regime (χ is slightly
smaller than 1), accompanied by a larger firing rate. The corre-
sponding firing activity is mildly irregular: 〈Cv〉 is smaller than in
Poisson processes (when 〈Cv〉 = 1). A quick analysis suggests that
this self-sustained regime emerges from the vanishing width of the
pulses combined with the PRC shape, which is strictly equal to zero
in a finite phase range below the threshold 8th = 1. In fact, sim-
ilar studies performed with PRC3 do not reveal any evidence of a
phase transition (see orange stars and green squares in Fig. 2), indi-
cating that such behavior is nothing else but a peculiarity of PRC1

with δ-pulses. We have not further explored this regime. It is nev-
ertheless worth noting that the sudden increase of the firing rate
observed when passing to the strong-coupling regime is reminiscent

FIG. 2. Characterization of the global network dynamics with interactions through
δ-pulses. Mean firing rate ν, mean coefficient of variations 〈Cv〉, and order
parameter χ are plotted vs the coupling strength µ in panels (a), (b), and (c),
respectively. Black triangles, red circles, green crosses, and blue diamonds corre-
spond to N = 10 000, 20 000, 40 000, and 80 000, respectively, all obtained with
PRC1. Orange stars and green squares correspond to N = 10 000 and 40 000
obtained with PRC3. The vertical dashed line represents the critical coupling
µc = 0.537.

of the growth observed in LIF neurons,21 although in such a case, the
increase is accompanied by a significantly bursty behavior.25

More important is the outcome of the finite-size scaling analy-
sis, performed to investigate the robustness of the observed scenario.
In Fig. 2, one can see that the various indicators under stimulation of
PRC1 are size-independent deeply within the two dynamical phases,
while appreciable deviations are observed in the transition region.
This is customary when dealing with phase-transitions. It is not easy
to conclude whether the transition is either first or second order: the
〈Cv〉 is reminiscent of the divergence of susceptibility seen in con-
tinuous transitions, but this is an issue that would require additional
work to be assessed.

IV. IDENTICAL FINITE-WIDTH PULSES

In this section, we start our analysis of finite pulses by
assuming the same width for inhibitory and excitatory neurons; i.e.,
α−1 = β−1. The asymmetric case is discussed in Sec. V. All other
system parameters are kept the same as in Secs. II and III (including
the PRC shape).

Before discussing the macroscopic measures, we turn our atten-
tion to typical CID features. The average phase 〈8〉(t) = 1

N

∑

j 8
j(t)

[see Fig. 3(a)] exhibits stochastic-like oscillations, which represent
a first evidence of a non-trivial collective dynamics. The raster plot
presented in panel Fig. 3(b) contains the firing times tn of a subset
of 100 neurons: there, one can easily spot the time intervals charac-
terized by a more coordinated action [see, for instance, around the
vertical green line at time 8374 in Fig. 3(a)]. A more quantitative rep-
resentation is presented in Fig. 3(c), where the instantaneous phase
distribution P(8) is plotted at two different times in correspondence
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FIG. 3. CID properties for PRC1, µ = 0.95, α = β = 100, and N = 10 000. Panel (a): time series of the mean-field 〈8〉. Panel (b): raster plot of spiking times tn for 100
oscillators out of N = 10 000. Panel (c): instantaneous probability distribution of the phases P(8) at two different time points t = 8363 (red) and t = 8374 (green). The
probability distributions are normalized such that the area underneath is 1.

of qualitatively different regimes of the phase dynamics [see the ver-
tical lines in panel (a)]. The peak at 8 = 0 is due to the finite fraction
of neurons standing still in the refractory period. A small amount of
negative phases are also seen: they are due to prevalence of inhibition
over excitation at the end of refractoriness. Moreover, the instanta-
neous phase distribution P(8) presented in Fig. 3(c) shows that, at
variance with the classical asynchronous regime, the shape of the
probability density changes with time. The narrowest distribution
(green curve) corresponds to the region where strong regular oscil-
lations of 〈8〉 are visible in panel (a): within this time interval, a
“cloud” of neurons homogeneously oscillates from reset to threshold
and back.

The resulting order parameter is reported in Fig. 4. In panel (a),
we plot χ as a function of µ for different widths: from broad pulses
(red stars correspond to α = 1, a width comparable to the ISI) down
to very short ones (green triangles correspond to α = 1000). The
general message is that partial synchrony is preserved. Nevertheless,
it is also evident that increasing the width progressively decreases the
amplitude of the order parameter. The main qualitative difference is
the smoothening of the transition observed for δ-pulses (in corre-
spondence of the vertical dashed line at µc). The singular behavior
of δ-spikes is confirmed by the relatively large deviations appearing
already for α = 1000.

A more direct illustration of the role of α is presented in
Fig. 4(b), where we plot χ vs α for different coupling strengths:
µ = 0.2 (black triangles), 0.47 (red crosses), and 0.95 (blue dia-
monds). An overall increasing trend upon shortening the pulse
width is visible for all coupling strengths, although the rate is rel-
atively modest for weak coupling, becoming more substantial in the
strong-coupling limit.

Finally, we have briefly investigated the presence of finite-
size effects by performing some simulations for N = 40 000 (to be
compared with N = 10 000 used in the previous simulations): see

FIG. 4. Global network dynamics in the presence of identical finite pulse width and
PRC1. Panel (a): order parameter χ vs µ for N = 10 000 and α = 1000 (green
triangles), α = 100 (blue crosses), α = 10 (orange squares), and α = 1 (red
stars). The black dashed curve corresponds to the asymptotic results obtained
for δ pulses [see Fig. 2(c), N = 80 000] with the critical value µc derived therein.
Panel (b): order parameter χ vs α for N = 10 000 and µ = 0.2 (black trian-
gles),µ = 0.47 (red pluses), andµ = 0.95 (blue diamonds). In both panels, the
magenta circles show the results forN = 40 000 to compare with the blue curves,
respectively. The arrows highlight the parameter set for which we show in Fig. 3
typical CID time series.

Chaos 31, 043135 (2021); doi: 10.1063/5.0046691 31, 043135-5

Published under an exclusive license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

magenta circles in both panels. We can safely conclude that the
overall scenario is insensitive to the network size.

V. FULL SETUP

In Sec. IV, we have seen that the finite width of the spikes does
not kill the spontaneous emergence of CID. Here, we analyze the
role of an additional element: the asymmetry between inhibitory
and excitatory pulses. We proceed by exploring the two-dimensional
parameter space spanned by the coupling strength µ and the asym-
metry between pulse widths. The latter parameter dependence is
explored by setting α = 100 and letting β (the inverse width of
inhibitory pulses) vary. All other network parameters, including the
PRC shape, are assumed to be the same as in Secs. II–IV.

The microscopic manifestation of CID in the setup with non-
identical pulses is qualitatively the same as for identical pulses shown
in Fig. 3. The results of a systematic numerical analysis are plotted in
Fig. 5, where we report three indicators: the firing rate ν, the mean

coefficient of variation 〈Cv〉, and the order parameter χ vs β for
three different coupling strengths (see the different columns) and
four network sizes.

All indicators reveal the existence of two distinct phases: a
synchronous regime arising for small β values and CID observed
beyond a critical point, which depends on the network size: the tran-
sition is discontinuous. All panels reveal a substantial independence
of the network size, with the exception of the transition between
them (we further comment on this issue later in this section).

The first regime is synchronous and periodic, as signaled by
χ = 1 and 〈Cv〉 = 0. The corresponding firing rate ν is a bit smaller
than 0.97, the rate of uncoupled neurons (taking into account refrac-
toriness). This is consistent with the expected predominance of
inhibition over excitation in this type of setup. A closer look shows
that in the synchronous regime, ν increases with β . This makes
sense since the smaller β , the longer the time when inhibition
prevails, thereby decreasing the network spiking activity. The weak
dependence of ν on the coupling strength µ is a consequence of

FIG. 5. Characterization of the global network dynamics for a nonidentical finite pulse width, obtained with α = 100 and PRC1. Each column refers to different coupling
strengths: µ = 0.3 (a), µ = 0.47 (b), and µ = 0.95 (c). Rows: mean firing rate ν, mean coefficient of variations 〈Cv〉, and order parameter χ vs β . Colors and symbols
define network sizes N: 10 000 (black triangles), 20 000 (red crosses), 40 000 (orange circles), and 80 000 (blue stars). Each data point is based on a time series generated
over 10 000 time units and sampled every 1000 steps after the transient has sorted out.
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FIG. 6. Power spectra S(f) of an average phase as a function of frequency.
All presented data refer to PRC1, α = 100 and N = 40 000. Each panel cor-
responds to different µ: 0.3 (a), 0.47 (b), and 0.95 (c).

FIG. 7. Power spectra S(f) of an average phase as a function of frequency. Panel:
(a) β = 90, µ = 0.3; (b) β = 120, µ = 0.3; and (c) β = 95, µ = 0.95. The
color defines network size N: 20 000 (red), 40 000 (green), and 80 000 (blue). All
presented data refer to PRC1 and α = 100. The vertical line is pointing out the
mean firing rate ν ≈ 0.523 for µ = 0.3 and ν ≈ 0.44 for µ = 0.95 (see Fig. 5).

FIG. 8. Phase diagram obtained with α = 100 and PRC1 for various N: 10 000
(black triangles), 20 000 (red squares), 40 000 (orange circles), and 80 000
(blue stars).

small effective fields felt by neurons when the PRC is small. Finally,
for intermediate β values (around 80) and large coupling strengths,
χ is large but clearly smaller than 1. This third type of regime will be
discussed in Sec. VI.

CID is characterized by a significantly smaller order parameter
which, generally tends to increase with the coupling strength. CID
is also characterized by a significantly smaller firing rate. This is due
the prevalence of inhibition, which is not diminished by the refrac-
toriness as in the synchronous regime. Finally, the coefficient of
variation is strictly larger than 0 but significantly smaller than 1 (the
value of Poisson processes), revealing a limited irregularity of the
microscopic dynamics. In agreement with our previous observations
for δ-spikes, 〈Cv〉 increases with the coupling strength.

Our finite-size scaling analysis also shows that the degree of
asymmetry (between pulse widths) compatible with CID progres-
sively reduces upon increasing the number of neurons. Although
the N-dependence varies significantly with the coupling strength, it
is natural to conjecture that, asymptotically, CID survives only for
β ≥ α. This is not too surprising from the point of view of self-
sustained balanced states. They are expected to survive only when
inhibition and excitation compensate each other: the presence of
different time scales makes it difficult, if not impossible to ensure
a steady balance.

Transition to synchrony upon lowering β was already observed
in Ref. 17 in a numerical study of LIF neurons, where, however, no
finite scaling analysis was performed. Interestingly, the onset of a
synchronous activity when inhibition is slower than excitation is also
consistent with experimental observations.26

We conclude this section with a more quantitative character-
ization of the irregularity of the collective dynamics. In Fig. 6, we
plot the Fourier power spectrum S(f) obtained from 〈8〉(t). The
panels correspond to three different coupling strengths (µ = 0.3,
0.47, and 0.95, from top to bottom). For each value of µ, we have
sampled three different pulse widths. Altogether, one can notice a
general increase of the power with µ. This is quite intuitive, as CID
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FIG. 9. The emergence of a bistable regime for nonidentical finite pulse widths and PRC1. The parameter set is the same as in Fig. 5(a) with N = 10 000. Panels: (a) mean
firing rate ν, (b) mean coefficient of variations 〈Cv〉, and (c) order parameter χ vs β . The blue circles and black triangles in all panels correspond to different initial conditions:
fully random (circles), restricted to a tiny interval (triangles). The narrow ICs are chosen to be in the order of δp = 10−3. The green diamonds correspond to the maximal
Lyapunov exponent, and the red one is the conditional Lyapunov exponent as a function of β . The magenta line (a) represents the semianalytic firing rate given in Eq. (A2).
The horizontal dashed line (c) is a reference point (λ = 0) in which the synchronous state changes its stability.

is the result of mutual interactions. A less obvious phenomenon is
the increase of the power observed when the inhibitory pulse width
β−1 is increased. This is an early signature of a transition toward
full synchronization, observed when β is decreased below a critical
value. Anyway, the most important message conveyed by Fig. 6 is
that all spectra exhibit a broadband structure, although most of the
power is concentrated around a specific frequency: f ≈ 1.5 (panel
a), f ≈ 1.4 (panel b), and f ≈ 0.93 (panel c). As a result, one can
preliminarily conclude that the underlying macroscopic evolution
is stochastic-like. A more detailed analysis could be performed by
computing macroscopic Lyapunov exponents, but this is an utterly
difficult task, as it is not even clear what kind of equation one should
refer to.

Additional evidence of the robustness of CID is given in
Fig. 7, where we investigate the amplitude of finite-size correc-
tions, by computing the power spectrum S(f) for different network
sizes for three different parameter sets: µ = 0.3, β = 90 (panel a),
µ = 0.3, β = 120 (panel b), and µ = 0.95, β = 95 (panel c). In all
cases, the spectra are substantially independent of the number of
neurons, although in panel (b), we observe a weak decrease in the
band f ∈ [1, 2.5], while a new set of peaks is born in panel (c).

Since the connectivity K of the largest networks herein considered
(N = 80 000) is comparable to that of the mammalian brain
(K = 8000 vs 10 000),4 we can at least conjecture that this phe-
nomenon may have some relevance in realistic conditions.

Finally, the low frequency peak clearly visible for small µ coin-
cides with the mean firing rate [see Fig. 5(a)], while the connection
with the microscopic firing rate is lost in panel (c).

VI. TRANSITION REGION

In Fig. 5, we have seen a clear evidence of a first-order phase
transition when either the pulse width or the coupling strength is
varied. So far, each simulation has been performed by selecting
afresh a network structure. The stability of our results indicates
that the transition does not suffer appreciable sample-to-sample
fluctuations.

The main outcome of our numerical simulations is summa-
rized in Fig. 8; the various lines identify the transition between
the two regimes for different network sizes. The critical points
have been determined by progressively decreasing β (see Fig. 5)
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FIG. 10. Instantaneous probability distribution P(8) when centered around the
same angle for different β values: 70 (long-dashed red), 50 (short-dashed black),
48 (dot-dashed blue), and 46.3 (solid green). All snapshots correspond to the
black triangles in Fig. 9.

and thereby determining the minimum β-value where CID is sta-
ble. Upon increasing N, the synchronization region grows and the
transition moves toward β = α.

So far, the initial condition has been chosen by selecting inde-
pendent, identically uniformly distributed random phases and zero
fields. Since it is known that discontinuous transitions are often
accompanied by hysteretic phenomena, we now explore this possi-
bility. We start fixing a different type of initial conditions: the phases
are selected within a small interval of width δp (while the fields are set
equal to zero and δt = 10−4).27 Figure 9 combines the scenario pre-
sented in Sec. V for a network with N = 10 000 neurons and µ = 0.3
[the blue dots correspond to the content of Fig. 5(a)], with the results
of the new simulations obtained for δp = 10−3 (see black curves and
triangles). For β ∈ I1 = [40, 106], there is a clear bistability: the new
simulations reveal that χ ≈ 1, much above the typical CID value.

More precisely, χ < 1 for β ∈ I2 ≈ [46, 91], while χ = 1 for
β ∈ (I1 − I2). Since χ = 1 is accompanied by a vanishing 〈Cv〉, it
is straightforward to conclude that this regime is the periodic syn-
chronous state whose linear stability can be assessed quantitatively.

The conditional Lyapunov exponent λc provides a semi-
analytical approximate formula. In the Appendix, we have derived
Eq. (A8) whose implementation leads to the red curve presented in
Fig. 9(c). It provides a qualitative justification of the phase diagram:
for instance, we see that the synchronous solution is unstable in the
interval I2, where χ < 1. By following the approach developed in
Ref. 19, we can compute also the maximal Lyapunov exponent λ: it
is given by the maximal eigenvalue of a suitable random matrix. The
resulting values correspond to the green curve. The changes of sign
of λ coincide almost exactly with the border of the intervals where
the synchronous state ceases to be observed.

What is left to be understood is the regime observed within the
interval I2: it differs from the perfectly synchronous state, but it is
nevertheless nearly synchronous. While approaching the left bor-
der of I2, where the synchronous state becomes stable, the width of
the phase distribution progressively shrinks. This is clearly seen in

FIG. 11. Characterization of the global network dynamics for long finite
pulse widths, PRC1, µ = 0.3 and α = 12. The blue circles (N = 10 000),
brown diamonds (N = 20 000), magenta cross (N = 40 000), and green stars
(N = 80 000) correspond to full-range random ICs. The black triangles
(N = 10 000) correspond to narrow ICs with δp = 10−3. The red curve is the
conditional Lyapunov exponent.

Fig. 10, where four instantaneous phase distributions are plotted for
decreasing β values (from red to green curve). The transition sce-
nario occurring at the other edge of the interval I2 appears to be
different, and further studies would be required. However, a com-
parative analysis of different models suggest that this regime follows
from a suitable combination of refractoriness and the shape of the
PRC. As we suspect not to be very general, we do not investigate it
in further detail.

Finally, we have considered broader pulses to test the robust-
ness of our findings. More precisely, now, we assume the pulse
widths α−1, β−1 to be longer than the refractory time tr as observed
in real neurons.4,21 The results are displayed in Fig. 11 for α = 12 and
µ = 0.3. Once again, we see that CID extends to the region where
β < α and that the transition point moves progressively toward
β = α upon increasing the network size (see the different curves).
On the other hand, the strength of CID is significantly low
(χ = 0.11), possibly due to the relative smallness of the coupling
strength. Furthermore, the evolution of quasi-synchronous solu-
tions (δp = 10−3) reveals again bistability in a relatively wide interval
of β-values, β ' 8.5 − 14.3, which now extends beyond β = α: a
result compatible with the transversal stability (see the red curve for
λc in Fig. 11).

A. Robustness

In Secs. IV and V, we have investigated the dependence of CID
on the spike-width as well as on the coupling strength. Now, we
examine the role of the PRC shape. Following Fig. 1, we consider
a couple of smoothened versions of PRC1, defined in Sec. II. The
results obtained for a network of N = 10 000 neurons are reported
in Fig. 12.

All simulations have been performed for α = 100, while β has
been again varied in the range [20, 120]. In each panel, blue cir-
cles, orange stars, and green diamonds have been obtained by setting

Chaos 31, 043135 (2021); doi: 10.1063/5.0046691 31, 043135-9

Published under an exclusive license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 12. The robustness for other PRCs. The mean firing rate ν, the mean coefficient of variations 〈Cv〉, and the order parameter χ vs inhibitory pulse widths β are shown
in panels (a), (b), and (c), respectively, for N = 10 000 and α = 100. PRC1 with random ICs is shown for µ = 0.3 (blue circles) as reference to Figs. 5(a) and 9. The PRC2

with random ICs is depicted for µ = 0.3 (orange stars) and µ = 0.7 (green stars). Green diamonds and black triangles result from PRC3 and µ = 0.3. The former has
been created with random ICs and the latter with strongly restricted ICs with δp = 10−3 within the narrow basin of attraction for the synchronous attractor. The magenta
curve [panel (a)] represents the semi-analytic firing rate for PRC3 according to Eq. (A2). Panel (c) shows on the alternative y-axis also the conditional Lyapunov exponent λc

(red curve) for synchronous solutions and PRC3. The horizontal red dashed line is the null line to the axis on the right.

µ = 0.3; they correspond to PRC1,2,3, respectively. As a first general
remark, the overall scenario is not strongly affected by the specific
shape of the PRC. The mean firing rate is approximately the same
in all cases, while the coefficient of variation is substantially higher
for the sinusoidal (and more realistic) PRC3. Moreover, the order
parameter for PRC3 is remarkably close to that for PRC1 [see panel
(c) of Fig. 12].

The most substantial difference concerns the transition from
synchrony to CID, which occurs much earlier in PRC2. On the other
hand, the χ-behavior of PRC2 can be brought to a much closer
agreement by increasing the coupling strength (the green asterisks
in Fig. 12 refer to µ = 0.7). This observation raises the issue of quan-
tifying the effective amplitude of the coupling: PRCs introduced in
Sec. II are all functions whose maximum value is equal to 1. This
does not exclude that the effective amplitude may be significantly
different, deviation that can be partially removed by adjusting the
value of the coupling constant µ as shown in Fig. 12.

Anyhow, these qualitative arguments need a more solid jus-
tification. In fact, in this last case (PRC2 and µ = 0.7), 〈Cv〉 is
significantly larger (above 0.6 instead of below 0.2), consistently with
the analysis carried out in Ref. 25, where it is shown that a large
coupling strength induces a bursting phenomena in LIF neurons.

Finally, we investigate the presence of hysteresis in the case of
PRC3. The results, obtained by setting all parameters as in the pre-
vious cases, are reported in Fig. 12 (see black triangles): they have
been obtained by setting the initial spread of phases δp = 10−3. Once
again, there exists a wide parameter range where CID coexists with
a stable synchronous regime.

At variance with the previous case (see Fig. 9), the synchronous
state is always stable over the range β ≤ 110. This is consistent with
the variation of the conditional Lyapunov exponent, which does not
exhibit an “instability island.” As from Eq. (A8), λc is the sum of two
terms. In the case of PRC3, the second one is absent because the PRC
amplitude is zero at the reset value 8r = 0.

VII. CONCLUSION AND OPEN PROBLEMS

In this paper, we have discussed the impact of finite pulse
widths on the dynamics of a weakly inhibitory neuronal network,
mostly with reference to the sustainment and stability of the bal-
anced regime.

In computational neuroscience, both exponential28 and α-
pulses29,30 are typically studied. The former ones are simpler to
handle, as they require one variable per neuron per field type
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(inhibitory/excitatory); the latter ones, being continuous, are more
realistic but require twice as many variables. In this paper, we have
selected exponential pulses to minimize the additional computa-
tional complexity. We have prioritized the analysis of short pulses
(about hundredth of the interspike interval) in order to single out
deviations from δ-spikes. However, tests performed for relatively
longer spikes suggest that the general scenario is substantially con-
firmed for ten times longer pulses (a value compatible with the time
scales of AMPA receptors26,31). The main changes observed when
decreasing α down to 12 (starting from our reference 100) is the
disappearance of the quasi-synchronous regime for a small degree
of asymmetry: this happens around α ≈ 60–70.

Besides pulse width, the asymmetry between excitatory and
inhibitory spikes (a parameter that does not make sense in the case
of δ-pulses) plays a crucial role in the preservation of the balance
between excitation and inhibition. In fact, upon changing the ratio
between the excitatory and inhibitory pulse width, different regimes
may arise. The role of time scales is particularly evident in the syn-
chronous regime, where the overall field is the superposition of two
suitably weighted exponential shapes with opposite signs: depend-
ing on the time of observation, the effective field may change sign
signaling a prevalence of either inhibition or excitation.

Altogether, CID is robust when inhibitory pulses are shorter
than excitatory ones (this is confirmed by the corresponding insta-
bility of the synchronous regime). More intriguing is the scenario
observed in the opposite case when CID and synchrony may be
simultaneously stable. A finite-size analysis performed by simulating
increasingly large networks shows that the hysteretic region progres-
sively shrinks, although it is still prominent—especially for weak
coupling—for N = 80 000 when the connectivity of our networks
(K = 8000) is comparable to that of the mammalian brain. Anyhow,
on a purely mathematical level, one can argue that the transition
from CID to synchrony eventually occurs for identical widths.

Further studies are definitely required to reconstruct the gen-
eral scenario since the dynamics depends on several parameters.
Here, we have explored in a preliminary way the role of the PRC
shape: so long as it is almost of type I, the overall scenario is robust.

Finally, the transition from CID to synchrony requires more
in-depth studies. A possible strategy consists of mimicking the back-
ground activity as a pseudo-stochastic process, thereby writing a
suitable Fokker–Planck equation. However, at variance with the δ-
spike case, here, additional variables would be required to account
for the dynamics of the inhibitory/excitatory fields.
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APPENDIX: MEAN-FIELD MODEL FOR A FINITE-WIDTH

PULSE

We investigate the stability of the period-1 synchronous state
through the conditional Lyapunov exponent. This regime is charac-
terized by a synchronous threshold-passing of all oscillators leading
to exactly the same exponentially decaying excitatory and inhibitory

field for all oscillators. The synchronous solution 8(t) with a period
T of Eqs. (1) and (2) is obtained by integrating the equation



















8̇ = 1 +
µ

√
K

0(8)(E(t) − I(t)),

E(t) = E◦e
−αt,

I(t) = I◦e
−βt,

(A1)

where

E◦ =
Keα

1 − e−αT
, I◦ =

gKiβ

1 − e−βT
.

The fields follow an exponential decay with the initial ampli-
tudes E◦, I◦ for the excitatory and inhibitory field, respectively. In
order to determine the stability of the synchronous state, we first
need to find the period T via a self-consistent iterative approach.
Setting the origin t = 0 as the time when the phase is reset to zero,
we define T as a time when the phase variable reaches its maximal
value, i.e., 8(T) = 1. We integrate the phase starting from 8 = 0 up
to 8(T) by initially imposing arbitrary non-zero values for E◦ and
I◦. The procedure is then repeated with updated values of the initial
field amplitudes E◦, I◦ until convergence to a fixed point is attained.
The firing rate is given by

ν̃ ≡
1

T
. (A2)

The conditional (also known as transversal) Lyapunov expo-
nent is a simple tool to assess the stability of the synchronous regime.
It quantifies the stability of a single neuron subject to the exter-
nal periodic modulation resulting from the network activity. The
transversal Lyapunov exponent is the growth rate λc of an infinites-
imal perturbation. Let us denote with δtr the time shift at the end of
a refractory period. The corresponding phase shift is19

δφr = 8̇(tr)δtr =
{

1 +
µ

√
K

0(0)[E(tr) − I(tr)]

}

δtr. (A3)

From time tr up to tm, the phase shift evolves according to

˙δφ =
µ

√
K

0′(8)(E(t) − I(t))δφ, (A4)

where tm is the minimum between the time when PRC1 drops to
zero and the time when the threshold is reached (in either case, we
neglect the variation of field dynamics since the field is treated as an
external forcing). As a result,

δφ = eDδφr, (A5)

where

D =
∫ tm

tr

µ
√

K
0′(8)(E(t) − I(t))dt. (A6)

The corresponding time shift is

δts =
δφ

8̇(tm)
,

where 8̇(tm) is the velocity at tm. The shift δts carries over unchanged
until first the threshold 8th = 1 is crossed and then the new refrac-
tory period ends. Accordingly, from Eqs. (A3) and (A5), the expan-
sion R of the time shift over one period (a sort of Floquet multiplier)
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can be written as

R =
δts

δtr

=
1 + µ√

K
0(0)[E(tr) − I(tr)]

8̇(tm)
eD. (A7)

This formula is substantially equivalent to Eq. (54) of Ref. 32 (3ii

corresponds to R), obtained while studying a single population
under the action of α-pulses. An additional marginal difference is
that while in Ref. 32, the single-neuron dynamics is described by a
nonuniform velocity field F(x) and homogeneous coupling strength,
here, we refer to a constant velocity and a phase-dependent PRC,
0(8).

The corresponding conditional Lyapunov exponent is

λc =
ln |R|

T
=

D + ln
∣

∣

∣
[1 + µ√

K
0(0)(E(tr) − I(tr))]/8̇(tm)

∣

∣

∣

T
. (A8)

The formula (A8) is valid for all PRCs as long as tm is replaced by T.
The formula (A8) is the sum of two contributions: the former one
accounts for the linear stability of the phase evolution from reset
to threshold (D/T); the latter term arises from the different velocity
(frequency) exhibited at threshold and at the end of the refractory
period. Notice that in the limit of short pulses, the field amplitude
at time tm is effectively negligible, and one can thereby neglect the
effect of the fields and assume 8̇(tm) = 1.

In mean-field models, the conditional Lyapunov exponent
coincides with the exponent obtained by implementing a rigorous
theory that takes into account mutual coupling.
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