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Abstract ﬂnc stability of synchronous states is ana-
lyzed in the context of two populations of inhibitory
and excitatory neurons, characterized by two different
pulse-widths. The problem is reduced to that of deter-
mining the eigenvalues of a suitable class of sparse ran-
dom matrices, randomness being a consequence of the
network structure. A detailed analysis, which includes
also the study of finite-amplitude perturbations, 1s per-
formed in the limit of narrow pulses, finding that the
overall stability depends crucially on the relative pulse-
width. This has implications for the overall property of
the asynchronous (balanced) regime.

Keywords Stability analysis - Synchronization -
Neuronal network - Sparse network

1 Introduction

Networks of oscillators are widely studied in many
fields: mechanical engineering [1,2], power grids [3],
arrays of Josephson junctions [4], cold atoms [5], neu-
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ral networks [6], and so on. Such networks can be clas-
sified according to the single-unit dynamics, the cou-
pling mechanism, the presence of heterogeneity, and
network topology. Since phases are the most sensitive
variables to any kind of perturbation [7], most of the
attention is devoted to setups composed of phase oscil-
lators [8], i.e., one-dimensional dynamical systems.
However, even the study of such relatively simple mod-
elsis not as straightforward as it mia appear. In fact, a
wide variety of dynamical regimes can emerge even in
mean field models of identical oscillators, ranging from
full synchrony to splay states, and including hybrids,
such as partial synchronization [9], chimera [10], and
cluster states [11]. General theory of synchronization
is, therefore, a much investigated field.

In this paper, we focus on synchronous states by
referring to a rather popular class of neural networks,
but the whole formalism can be easily extended to more
general systems so long as the coupling is mediated
by the emission of pulses. In nemscience, the neu-
ron dynamics is often described by a single variable,
the membrane potential, which evolves according to a
suitable velocity field. The resulting model 1s equiva-
lent to a phase oscillator, where the variable of the bar
system increases linearly in time and the complexity
of the evolution rule is encoded in the phase response
curve (PRC), which accounts for the mutual coupling
[12]. Under the additional approximation of a weak
coupling strength, the model can be further simplified
and cast into a Kuramoto-Daido form, where the cou-
pling depends on phase differences between pairs of
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oscillators [13,14]. Here, however, we stick to pulse-
co@red oscillators.

e stability of the synchronized state of Sﬁsc-
coupled phase oscillators has been first studied in the
context of excitatory d-pulses [15]. Synchronization is
induced when two oscillators are sufficiently close and
a common excitatory d-pulse instantaneously sets both
to the same value. Later, the stability analysis for exci-
tatory and inhibitory pulses [16, 17] has been extended
to d-pulses with continuous PRCs [18]. General for-
mulas are mostly available under severe restrictions,
such as identical oscillators, mean field interactions, or
8-like pulses.

The §-like pulse assumption is particularly limiting,
not only because realistic systems are characterized by
a finite width, but also because it has been shown that
zero-pulsewidth is a singular limit, which does not com-
mute with the thermodynamic limit (infinitely large
networks)—at least in the context of splay states [19].
Relaxing the zero-width limit forces to increase the
phase-space dimension to account for the dynamics of
the fields felt by the different neurons. The most gen-
eral result we are aware of is a formula derived i f.
[20] for a single population of identical neurons in the
presence of mean-field coupling and the so-called @-
pulses.

The introduction of sparseness implies a significant
increase in the computational complexity because of
the randomness of the connections. In this context, the
most relevant results are those derived in Ref. [21],
where a sparse random network (Erdds-Rényi type)
has been investigated in the presence of §-pulses. The
mach israther complex since the noncommutativity
associated with changes in the order of the incoming
spikes obliged the authors to introduce a multitude of
linear operators to solve the problem.

Here, we extend this kind of stability analysis to
finite pulse-widths in two populations of excitatory,
respectively, inhibitory, neurons. Our approach can also
be considered as an extension to sparse networks of the
work in Ref. [20] devoted to mean-field models. This
setup is chosen in studies of the so-called balanced state
[22], where the asynchronous regime is dominated by
strong fluctuations. Typically, the balance depends on
both the relative size of the two populations and the
relative amplitude of the pulses. In this paper, a careful
study of the fully synchronous regime shows that also
the relative pulse-width plays a non-trivial role.
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Finite-width pulses obviously have infinitely
many different shapes. In this paper, we consider the
simplest case of exponential spikes and assume, as
usual, that they superpose linearly. In practice, this
means that each oscillator (neuron) is characterized by
three variables: the phase or, equivalently, the mem-
brane potential and two variables describing the incom-
ing excitatory and inhibitory fields, respectively. At
variance with Ref. [20], instead of transforming the
model into a mapping (from one to the next spike
emission), here we preserve the time continuity, as this
approach allows for a more homogeneous treatment
pPahe oscillators maintaining the full 3N dimensional
structure of the phase-space (where N is the number of
oscillators).

Furthermore, in ;lgrcemwilh previous publica-
tions [23-25] we assume that each neuron receives
exactly the same number of excitatory and inhibitory
synaptic connections. In fact, in spite of the random
connectivity, in the fully synchronous regime, all neu-
rons are character| by exactly the same variables. A
crucial difference with respect to the mean-field model
is that the degeneracy of the Lyapunov spectrum is
lifted and the stability assessment amounts to deter-
mining the eigenvalues of a suitable (sparse) random
matrix.

More precisely, in Sect. 2 we define the model,
including the specific phase response curve used to per-
form numerical tests. The overall linear stability anal-
ysis 1s discussed in Sect. 3, first with reference to the
general case and then specifically referring to short (but
finite) pulses. In the same section, we also determine the
conditional Lyapunov exponent Ac, (i.e., the exponent
of a single neur(a;ubjecl to a given periodic forcing):
at variance with the mean-field model, A, differs from
the maximum exponent of the whole network, mean-
ing that the connectivity plays a crucial role. In Sect. 4,
we implement the formulas determined in the previ-
ous section to discuss the qualitative changes observed
by v;u‘_vin@e relative pulse-width. Finally, Sect. 5 is
devoted to a summary of the main results and an outline
of the open problems.

2 Model

The object of study is a network of N phase-oscillators
(also referred to as neurons), the first N, being excita-
tory, the last N; inhibitory (obviously, N, + N; = N).
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Each neuron is characterized by the phase-like variable
@/ < 1 (formally equivalent to the membrane poten-
tial), while the (directed) synaptic connections are rep-
resented by the connectivity matrix G with the entries

I, ifk — jactive
Gj,k =
0, otherwise

where Ef;l Gj=K.and Z}:;N{. Gy = K;, mean-
ing that each neuron j is characterized by the same
number of incoming excitatory and inhibitory con-
nections, as customary assumed in the literature [23]
(K = K, + K;, finally, represents the connectivity
altogether). 44

The evolution of the phase of both excitatory and
inwtory neurons is ruled by the same equation,

d‘>r"=1+Jr(¢J)(Ei—ﬂ), (1)

where I () represents the phase-response curve (PRC),
J the coupling strength and EJ (1) the excitatory
(inhibitory) field generated lﬁ]e incoming connec-
tions. Scaling properties with the network size N affect
the coupling J. In the case of sparse networks with fixed
connectivity (the case herein discussed), K as well as
J are simply independent of N. Whenever @/ reaches
the threshold @, = 1, the phase isresetto @, = O and
enters a refractory period f, durmwhich it stands still
and is insensitive to the action of the excitatory (E/)
and inhibitory (17) field. At the same time, the fields
of the receiving neurons are activated. If the neuron
k, emitting a spike at time r,f, 1s excitatory (k = N.),
then the excitatory field EJ of any receiving neuron j
is activated (and similarly for the inhibitory field 7).

The fields in Eq. (1) evolve according to the differ-
ential equations

Ej = — Ej — ZGJ'.kPk.kS(I - I:) (2)
n

3

P=—p(17—8> GiGri— Pipdt —1) ] .

n

where « (#) denotes the inverse pulse-width of the exci-
tatory (inhibitory) spikes. The coefficient g accounts
for the relative amplitude of inhibitory spikes com-
pared to excitatory ones. Py, represents the elements
of a projector operator P, separating excitatory from
inhibitory neurons: Py, = 0 except when k =m <
Ne, in which case F; = 1.

I'(9) 1
0.6 - 1

04} .
02} .

0 .
o 0

6 05 o |

Fig. 1 Example of the phase response curve (PRC) used in
Sect. 4 with ¢ = 0.1, @ = 0.9 in combination with ¢, = 0
and @y, = 1

In order to be more specific, we introduce the PRC
used later on as a testbed for the formalism developed
in the next section. We have chosen to work with the
following pie&wise linear PRC,

(@) —@) ifd </ <@

) otherwise

r@/)= (3)
where @ < 0, and 0 < ‘® < 1 characterize the PRC.
The resulting shape 1s plotted in Fig. 1 for @ = —0.1
and® =09".

As anticipated in the introduction, we are inter-
ested in assessing the stability of the fully synchronous
dynamics of peri()cmls a function of the relative pulse-
width, where T is the interspike interval. The solution
is obtained by integrating the equation,

b =1+JI(@NE 1),
E(t) = E,e ™ (4)
I(t) = Ie P,

where

K. gKif
BT i

are the magnitudes of the fields immediately after the

synchronous spike emission. The constants E, and 1
result self-consistently from the remaining field at the

! The peculiarity of a vanishing PRC for @ < @ < 1 is intro-
duced to match the PRC recently introduced in [26] to mimic
delay-coupled leaky integrate-and-fire neuron. However, it does
not atfect the generality of the formalism, as it can be easily
“removed” by assuming @ = 1.
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Fig. 2 Phase diagram of synchronous regimes. Period-1 solu-
tions exist above the curve in the white area. Crossing the curve,
in the grey area, period-2 solutions first emerge tollowed (further
down) by longer period regimes

end of the period T plus the contribution from the spike

emisgE.

Ing present paper, we focus on the stability of the
synchronous period-1 solution (i.e., the initial config-
uration is exactly recovered after one spike emission).
For long inhibitory pulses (small inhibitory decay rate
£), we observed also stable period-2 and higher order
periodic solutions. Fig. 2 shows the transition from sta-
ble period-1 to period-2 solutionin the ¢, § plane (from
top to bottom). Higher order periodic solutions appear
underneath that curve in the shaded area and result in
a synchronous bursting dynamics.

3 Linear stability analysis
3.1 General theory

ﬂ this section, we present the stability analysis of a
synchronous state in the period-1 regime. At variance
with Ref. [20], we do not construct the corresponding
map, which means that the phase-space dimension is
not reduced by a suitable Poincaré section and the pres-
ence of a neutral direction is preserved. Actually, this
property can be even used to double check the correct-
ness of the final result.

Let us start introducing a stroboscopic representa-
tion and focus on a weakly perturbed synchronous con-
figuration

&\ Springer

Fig. 3 An illustration of the perturbation analysis in time ¢ for
the synchronous state

Eﬁ) =E +¢ln)
Hn) =1, + i’ (m)
®in) =@, + i)

where all variables are determined at the end of consec-
utive refractory periods. However, as shown in Fig. 3
and clarified in the f(:llowia it is convenient to refer
@’ (n) to one period later with respect to €/(n) and
il(n). The fields E, = E.e™", I, = ILe ", and
the @, = 0 do not depend on n, as the reference tra-
jectory 1s periodic of period T. The overall perturba-
tion can be represented as a 3N dimensional vector
[e(n), i(n),@(n)]. For the future sake of simplicity, it
is convenient to introduce also a second representation
v(n) = [1e(n), T;(n), Ty(n)], where

T:(n) = e(n);'E,-

Ti(n) = im)/I (5)
Ty,(n) = @) /@,

qd E,-, f,- and (;!3,- all denote time derivates at the end
of a refractory period. In practice, T, corresponds to
the time shift of the original trajectory to match the

current perturbed state. The recursive transformation
can be formally written as

v(in + 1) = Lv(n) . (6)

Our next task is to determine the operator L. We start
from the evolution equation of the excitatory field,

Elm+D=eTEm) +a Z Gj,kPk,ke_wR ),
k
)
where t*(n) is the time elapsed since the arrival of the
spike sent by the kth neuron in the nth iterate.

Since the trajectory is close to the synchronous
periodic orbit, E/(n + 1) = E, +€/(n + 1), and
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thtny =1, + ré' (n). Up to first order in the pertur-
bations, Eq. (7) yields,
eln+ 1) =eTeln)
—a?e Y Gy Prtim), (®)
k

or, In vector notations,
€n+1) = Ace(n) — CeGP1y(n) (9

where

—al 2 —at
A, =e . Co=ae 7T,

A similar analysis of the inhibitory field leads to
i(n+1)=A;i(n) — C;G(L—-P)1,(n) (10)
where I is the N x N identity matrix, while

Aj=e T | G =gple .

Notice that, at variance with the previous case, there is
an extra factor g in the definition of C; to account for
the larger amplitude of the inhibitory spikes.

Finally, we deal with phase dynamics. The core of
the transformation is the mapping between the ampli-
tude @ (n) of the perturbation awne t, and the ampli-
tude @(n + 1) at time ¢, which can be formally written
as

en+1) =Sen+ 1)+ Sii(n + 1)+ Spep(n).

(11
This transformation is diagonal (it is the same for all
components); the three unknown parameters, S, S,
and S, can be determined by integrating the equation
obtained from the linearization of Eq. (1). To sepa-
rate the notation of the stroboscopic phase perturbation
w(n) from the continuously developing phase perturba-
tion between ¢, and 1, we introduce ¢ (r) for the later,

¢ =JT'(@NEW) — 1)
+J I(d) [e—“"—fr’e - e—ﬁ"—fr)s] (12)
More precisely, upon setting [e, i, ¢ (t,)] = [1.0,0],
[0, 1,01, and [0, 0, 1], ¢(7) corresponds to S, 5;, and

S4.respectively. Once @ (n+1) is known from Eq. (11),
it czﬁbc transformed into the corresponding time shift

rpn+ 1) = 20FD

where

P =1+JT@) (Ec,e‘“? - Ioe_ﬁF)

ﬂe time derivative of the phase in the point where the
neuron stops feeling the action of the field. In between ¢
and T, the oscillators evolve with the same velocity and
no adjustment to the time shift can be expected. The
transformation is completed by Eq. (5) which allows
mapping @(n) into the corresponding time shift and
obtaining

D+
= Scen+ 1)+ Si(n+ 1)+S¢cf>,,t¢(n), (13)
With the help of Egs. (9,10), we obtain
Dr,n+1)=A,Sem) + A Sin
— [CfSe(}P +CS5G(1L—-P)— Sé(f),,] Ty ().
(14)
or, in a more compact form,
3 T+ 1) = A See(m) + A;Sii(n) — Mt ,(n).
(15)
41

where M 1s an N x N matrix whose entries are defined
as follows,

C.S.. ifk— j. k= Ng
Ci§. ifk— jNg<k=N
M = .
—54P,. ifj=k
0, no connection from k to j # k.

For homogeneity reasons, 1t1s convenient to express all

of the three recursive relations in terms of the compo-
nents of the v vector,

C
T (n+1) = A1 (n) — E_—EGPrg(n)
r

7 Ci
Tiln+ 1) = A;r;(n) — ;TG (L —P)z,n)

r

i i
Ten+1) = AeSe =71 (n) + AiSi=71i(n)
& &

M) 16)

o]

Now, let us consider a homogeneous perturbation,
such that T = 7; = 7. This perturbation must be
mapped exactly onto itself, since it corresponds to a
homogenous time shift of the orbit. Let us see what
this amounts to. From the first of the above equations,
we have that

l=A,— CeKe;"]Er

&) Springer
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By looking at the definition of the various quantities,
we can see that the equality is indeed satisfied. This
is because Cc.,.‘E:',. = —(1 — A.)/K.. Analogously, we
can verify that C,—/f,- = —(1 — A;)/K;, so that we can
rewrite the transformation as

1—A
T.(n+ 1) = A.t.(n) +0t;(n) + X cGPr;ﬁ(n)

Tin+ 1) =0t:(n) + Ajti(n) ’

1— A
+

G (1 —P)1,(n)

Mz, (n)
Ten+ 1) = Bete(n) + Biti(n) — ———— (17)
P

where B, = A,S.E,/® and B; = A;S;1,/®.
By playing the same game of homogenous pertur-
bations with the last equation of Eq. (16), we find that

D =E;Se+ 15+ P Sy .

Direct numerical simulations confirm that this condi-
tion is satisfied, as it should, since it implies that a
homogeneous shift of the phase of all oscillators is time
invariant.

Altogether Eq. (17) is a representation of the linear
operator L formally introduced in Eq. (6). The eigen-
values of IL are the so-called Floquet multipliers Z;;
the synchronous solution is stable if the modulus of
all multipliers is smaller than 1.7 One can equivalently
refer to the Floquet exponents A; = log|Z;| that we
also call Lyapunov exponents with a slight stretch of
the notations.

For @, 8 > 1, the fields are exponentially small
when the neurons reach the threshold. In this limit, the
fields behave as slaved variables and their contribution
can be neglected in the stability analysis, which reduces
to diagonalizing an N x N matrix,

Tyn+ 1) =—M1t,n), (18)

(notice that @ can be safely set equal to 1, as the cou-
pling is indeed negligible at time 7).
3.2 Transversal Lyapunov exponent

A simpler approach to assess the stability of the syn-
chronous regime consists in investigating the stability

2 Wi exception of the unit multiplier associated with a time
shift o trajectory.
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of a single neuron subject to the external periodic mod-
ulation resulting from the network activity. The corre-
sponding growth rate A, of infinitesimal perturbations
15 called transversal or conditional Lyapunov exponent.
In mean-field models, this approach leads to the same
result obtained by implementing a more rigorous the-
ory which takes into account mutual coupling. Let the
time shift at the end of a refractory period be equal to
7, the corresponding phase shift is therefore

&) = D(t)try = {1 + JTONE(ty) — (1)}
(19)

Fromtime 7, upto time 7, the phase shiftevolves accord-
ing to the simplified version of Eq. (12),

¢ =JI'(@NEM -1 , (20)

where we have neglected the variation of field dynam-
ics, since the field is treated as an external forcing. As
a result,

¢@ =ePp(1,) , 1)
where, with reference to the PRC Eq. (3).
D= ﬁ [e—ﬁF _ e—ﬁfr:| _ JEo [c—aF _ e—m,.:|

B o

(22
The corresponding time shift is
¢ (1)
@

The shift T carries over unchanged until first the thresh-

T =

old ¢ = 1 is crossed, and then, the new refractory
period ends. Accordingly, from Eqs. (19,21), the expan-
sion R of the time shiftoverone period (a sortof Floquet
multiplier) can be written as

L+ JTOE®) = 1) 5 (23)

R=_"' —
Ty &
This formula is substantially equivalent to Eq. (54) of
Ref. [20] ( A;; corresponds to R), obtained while study-
ing a single population under the action of «-pulses.
An additional marginal difference is that while in Ref.
[20] the single neuron dynamics is described by a non-
uniform velocity field F (x) and homogeneous coupling
strength, here we refer to a constant velocity and a
phase-dependent PRC, I"(¢).
The corresponding conditional Lyapunov exponent
18
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0 1000 2000 3000
i
Fig. 4 The total Lyapunov spectrum, for (e, £) equal to (4,3),
(44), and (4.8) — top to bottom: the coupling strength 1s J =
0,03, as for all of our simulations, while N = 1000. The three
horizontal dasHggllines correspond to the three different rates
used to identity ¢ and £ values. The vertical dashed line separates

the part of the spectrum which, for large « and § values are
expected to be related to the actual network structure

In|R|
T

D +1In|[1+ JTOE®) —16,)1/P

= 7 . (24)

It is the sum of two contributions: the former one
accounting for the linear stability of the phase evo-
lution from reset to threshold (D/T); the latter term
arises from the diffeg@t velocity (frequency) exhibited
at threshold and at the end of the refractory period.
Notice that in the limit of short pulses, the field ampli-
tude at time 7 can be set equal to zero, thereby neglect-
ing the corresponding exponential terms in Eq. (22) and

A=

assuming P =0.

4 Application

‘We now implement the general f{)rmalisn the case of
the PRC defined by Eq. (3), considering a network with
N = 1000 neurons, a 10% connectivity (i K = 100
with K, = 80 and K; = 20), and g = S;E-;, coupling
strengthis assumed tobe J = .03, while the refractory
time is ¢, = 0.03. This setup, characterized by a slight
prevalence of inhibition (¢ K; =2 K,), is often adopted
in the study of balanced regimes (see, e.g., [23]).

The resulting Floquet spectra are presented in Fig. 4
for three different pairs of not-too-large @ and 8 val-
ues. Rather than diagonalizing the matrix defined by
Eq. (17), the 3,000 exponents have been determined

|
60 80 100

|
120 140

B

Fig. 5 The maximal Lyapunov/Flogquet exponent A yy {upper red
curve) vs. f for anetwork of N = 10, 000, with @ = 100 and the
other parameters set as in the previous figure. The black curve
corresponds to the transversal/conditional exponent 4., while

full dots and triangles result from the computation of the finite-
amplitude Lyapunov exponent 4 for &, = 10 2 and 1077,

respectively

by implementing a standard algorithm for the compu-
tation of Lyapunov exponents [27]. The larger are «
and S, the more step-like is the spectral shape, the two
lower steps being located around the decay rate (i.e.,
the inverse pulse-width) of the pulses (see the three
horizontal dashed lines, which correspond to A = —3,
-4, and -8, respectively). This is sort of expected, since
the field dynamics basically amounts to a relaxation
process controlled by the respective decay rate. Any-
how, since the overall stability is determined by the
largest exponents, it is sufficient@gggrestrict the analysis
to the first part of the spectrum (to the left of the verti-
cal dashed line in Fig. 4), which, in the limit of large «
and S, can be directly determined by diagonalizing the
matrix defined in Eq. (18).

The dependence of the maximum exponent Ay on
the (inv@ge) pulse-width of the inhibitory spikes is
reported m Fig. 5 (see the upper red curve). In this case,
the Floquet exponent hagi§een obtained by diagonaliz-
ing the matrix in Eq. (18) for a system size N = 10, 000
and a connectivity K = 1000 (K, = 800, K; = 200).

The vertical dashed corresponds to the sym-
metric case, where both excitatory and inhibitory neu-
rons have the same width (and shape). Interestingly, the
stability, determined by the largest nonzero exponent,
(the always present A = 0, corresponds to the neutral
stability associated with a time shift of the trajectory)
depends strongly on the relative excitatory/inhibitory

&) Springer




740

Afifurrahman et al.

pulse width and can even change sign: the synchronous
solution is stable below = 67 . Additionally, there
1s evidence of a sort of singularity around g = 107,
when the inhibitory spikes are slightly shorter than the
excitatory ones.

Given the finite dimension of the matrices, sample-
to-sample fluctuations are expected. Such fluctuations
are, however, rather small. as testified by the smooth-
ness of the red curve in Fig. 5. In fact, the single val-
ues of the Floquet exponents have been obtained not
only by varying the (inhibitory) pulse-width, but also
considering different network realizations. Although
small, the fluctuations prevent drawing definite con-
clusions about the singularity seemingly displayed by
the derivative of Ay (f) around § = 107.

In the limit of a fully connected network, we expecta
perfectly degenerate spectrum (all directions are mutu-
ally equivalent) and A jy equal to the conditional Lya-
punov exponent ). defined in Eq. (24). The lower black
curve reported in Fig. 5 corresponds to A.; except for
a narrow region around § = 107, A, 1s always close
to (lower than) Aus. This means that the mean-field
approximation still works pretty well in a network of
10,000 neurons with a 10% connectivity.

The explicit formula Eq. (24) helps also to shed light
on the S dependence of the network stability. The main
responsible for the qualitative changes observed around
B = 107 is the logarithmic term, arising from the dif-
ference between the velocity at threshold (equal to 1,
irrespective of the S-value) and the velocity at the end of
the refractory period. This latter velocity is determined
by the effective field Eqq (1) = E(t,) — 1 (¢,) whidigin
turn strongly depends on the relative pulse-width. The
time dependence of E,y can be appreciated in Fig. 6,
where we report the trace for three different § values
(60,90, and 120) and the same e = 100. There, we see
that even the sign of the effective field may change; for
B = 120, E.g is initially negative because inhibition
dominates, but above t = 0.02 < ¢, the slower decay
of the excitatory pulses takes over, so that the effective
field amplitude is positive at the end of refractoriness.
For f = 90 = « = 100, inhibition prevails at all times
and the effective field is thereby negative for t = t,.
Finally, for § = 60, excitation initially prevails, but
inhibition takes soon over.

3 For the sake of completeness, notice that by further decreasing
£ the stability changes again.
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Fig. 6 Effective field shape for @ = 100 and £ = 60 (black),
g =90 ), and § = 120 (blue). The vertical dashed line
identifies the end of the refractory period

From Eq. (24), we see that the sign of the logarith-
mic contribution changes depending whether the argu-
ment is smaller or larger than 1. More precisely, if the
effective field is negative but larger than —2/(JI"(0)),
the discontinuity of the velocity tends to stabilize the
synchronous regime; if @@(rg) = —1/J17(0), the
orbit is even superstable, 1.e., the Lyapunov exponent is
infinitely negative. This is precisely what happens for
B =~ 107. Altogether, the 8 interval around 107 sepa-
rates the region where the expansion/contraction factor
is positive (to the right), from the region where it is
negative (to the left).

The sign of the multiplier has a simple explanation:
14+JF I'(0) Eepr(tr) < Omeans thatthe phase velocity is
negative at the end of therefractory period. Therefore, if
one follows two nearby neurons—one leading over the
other before reaching the threshold—then at the end of
refractoriness, the leading neuron becomes the lagging
one, as they initially move in the “wrong” direction®.
This explains how the pulse-width may affect the sta-
bility.

So far we have referred to the Floquet exponents,
without paying attention to the phase of the multipliers.
In Fig. 7, we report both real and imaginary part of all
eigenvalues for four different § values.

For # = 60 and 90, the eigenvalues (except for
Z = (1,0)
els a and b

are distributed within a circle (see pan-
. This is reminiscent of Girko’s theorem

—

[28], which states that the eigenvalues of an N x N

4 Later, the velocity changes sign becoming positive, but this
does not modity the ordering.
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Fig.7 The distribution of the complex eigenvalues (bl ts)
for short pulses, N = 10, 000, @ = 100, and J = 0.03. The red
circle highlights the unit circle. The black cross at (1,0} singles
out the always present eigenvalue associated with the periodic
motion. The four panels represent the results tor different decay
rates of the inhibitory pulses 8. In particular § = 60, 90, 107
and 120} for panel (a) - (d), respectively

14

%dom matrix with independent and identically dis-
tributed entries (with zero mean zero and variance equal
to 1/N) are uniformly distributed over the unit disc.
However, it is not obvious how to adapt/extend this
theorem to the present context, since the matrix M
although being random does not satisfy several of the
required assumptions, starting from the off-diagonal
elements which take only three different values and
their average is nonzero.

Returning to Fig. 7, we see that for § = 6(? the
eigenvalues lie within the unit circle, meaning that the
synchronous solution is stable, while for § = 90 all
eigenvalues lie outside, meaning it is fully unstable:
any perturbation is amplified!

Above 8 = 100, the spectrum changes shape,
becoming funnel-like: for § = 120 (panel d), all eigen-
values sit again outside the unit circle, meaning that the
synchronous solution is fully unstable. Interestingly,
for § = 107 (panel c), the funnel is almost entirely
contained within the unit circle, so that the resulting
(weak) instability is due to few complex eigenvalues
detected on the upper-left and lower-left corners of the
funnel. As an additional remark, we can see that the
eigenvalue with largest modulus (i.e., the one deter-
mining the stability) is real and negative for § = 60
and 90, while it is real and positive for = 120°. This

5 In practice, depending on the network realization, the leading
eigenvalues may have a small imaginary component.

is coherent with the behavior of the sign of the mul-
tiplier R (see Eq. (23)), which changes from positive
to negative, while decreasing . The qualitative differ-
ences observed in the region around § = 107 suggest
that the “singular” behavior exhibited by A 5y is the sig-
nature of a true transition associated with a change of
the spectral structure.

Finally, a few words about the leading eigenvec-
tor. It must possess some special features which are
responsible for its larger expansion rate. However, we
have not found any correlation with obvious indicators
such as an anomalously large outgoing connectivity.
We have only observed that the vector components are
distributed in a Gaussian way with zero average.

4.1 Finite-amplitude perturbations

Finally, we have directly investigated the stability of the
synchronous regime, by studying the evolution of small
but finite perturbations under the action of the model
Eqs. (1-2) in the limit of short pulses. By following the
same strategy developed in tangent space, the pertur-
bation amplitude has been quantified as the temporal
shift ata specific moment. We find itconvenient to iden-
tify the specific moment with the threshold passing time
tL (n) of the last neuron (in the nth period). Provided the
perturbation is small enough, all neurons are still in the
refractory period and their phase Qqu;ll to 0 when the
time is taken. The t oral shift of the jth neuron can
be definedas 6; = 1~ (n) —t;(n), where ¢j(n) is its nth
passing time. The perturbation amplitude can be finally
defined as the standard deviation 8 (n) of all temporal
shifts. Given an initial distribution with a fixed 8 ,(0),
itis let to evolve to determine its value once the new set
of spiking times is over. The ratio Ry = 8,(1)/8,(0)
represents the contraction or expansion factor over one
period T'. Afterward, the standard deviation is rescaled
to the original value 4,(0) to avoid it becoming either
too large to be affected by nonlinear effects or too small
to be undetectable. We have found that §,(0) = 10—3,
or 1077 suffices to ensure meaningful results. The cor-
responding (finite amplitude) Lyapunov exponent A 5
is finally obtained by iterating this procedure to let the
perturbation converge along the most expanding direc-
tion and thereby computing A y = In|R¢|/T. We have
found that 50 iterates suffice to let the transient die out.

A crucial point 1s the integration time step if the
model is evolved by implementing an Euler algorithm.
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In fact, the time step must be much smaller than the sep-
aration between spike-times, since they have to be well
resolved. We have set the Euler integration time step
At at least 100 times smaller than the standar@pgvi-
ation of the perturbation é,(0). The numerical results
are plotted in Fig. 5 for four different § values (see the
symbols): they confirm the theoretical predictions.

5 Conclusions and open problems

In this paper, we have developed a formalism to assess
the stability of synchronous regimes in sparse networks
of two populations of oscillators coupled via finite-
width pulses. The problem is reduced to the determi-
nation of the spectral properties of a suitable class of
sparse random matrices. Interestingly, we find lhm]e
relative width of excitatory and inhibitory spikes plays
a crucial role even in the limit of narrow spikes, up to
the point that the stability may qualitatively change.
This con[’ﬂ]s once more that the §-spike limit is sin-
gular and 1tis necessary to include the spike width into
the modeling of realistic neuronal networks.

Our analytical treatment has allowed constructing
the stability matrix, but the derivation of an analyt-
ical solution of the spectral problem remains an open
problem. The conditional Lyapunov exponent provides
an approximate expression for the maximum Floquet
exponent. It is quite accurate in a broad range of pulse-
widths but fails to predict the weak instability occur-
ring when inhibitory pulses are slightly narrower than
excitatory ones. For relatively wider inhibilopulses,
numerical simulations suggest that it will be worth
exploring the possibility to extend the circular law of
random matrices to sparse matrices of the type derived
herewith.

While mean-field models are characterized by a
degenerate spectrum (all directions are equally stable),
here the degeneracy is lifted by the randomness associ-
ated with the sparse connectivity. It is therefore desir-
able to understand which features make some direc-
tions so special as to be characterized by a minimal
stability. This is probably related to the presence of
closed loops of connections among oscillators which
sustain an anticipated or retarded firing activity. Fur-
ther studies are required.
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