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Abstract 

Collective oscillations is typical phenomena observed in the systems biology including neurons. 

Investigating the mechanisms for which it occurs in neural networks evokes a significant interest 

among neuroscientists. From mathematical point of view, the coupling schemes rule the neuron’s 

behaviours ranging from microscopic to macroscopic scales. This paper aims to study the impacts 

of coupling scheme in a minimal network of two fully coupled identical oscillators (e.g., neurons). 

We proceed the research by employing the numerical approach and time-series analysis. We 

consider both Kuramoto-like oscillator and Leaky integrate-and-fire neuron as the objects of study. 

In the former case, we found the phase of two oscillators are perfectly locked and stable if their 

frequency are identical as stated by the main theorem. In the latter case, the membrane potentials 

of two neurons are perfectly synchronized, characterized by the same firing rate, due to the effect 

of excitatory delta pulses. 
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1. Introduction 

As explained in the elementary books of physiology, the very simple structure of biological 

neuron consists of three main components namely dendrite, soma, and axon [1]. The dendrites collect 

all signals and transmit them to the soma where a summation process is performed. If the total 

incoming inputs exceed a certain value, then a pulse (or equivalently “spike”) is generated as the 

output signal. The signal travels along the axon up to the axon terminal button and triggers the release 

of neurotransmitters into the gap between the presynaptic (sender) and postsynaptic (receiver) 

neurons [2]. 

The neuron communicates by sending and receiving the pulses. The effect of the pulse on 

neuron dynamics is encoded in the so-called inter-spike interval (ISI), i.e. the time length between 

any two consecutive spikes [3]. In the absence of any coupling, the neuron fires the pulse at a constant 

rate1 1 ISI0⁄ , if it operates above the threshold [2] [4]. Contrarily, the presence of coupling affects the 

firing as well as the ISI of single neuron [5]. The incoming excitatory pulses accelerates the firing 

rate of postsynaptic neuron, while the inhibitory one decelerates the firing rate. 

In order for the coupling to take a role on the neuron dynamics, it is necessary to introduce a 

connection between the two neurons. Mathematically, the connectivity of any two “nodes” can be 

represented in term of adjacency matrix 𝐺 = (𝑔𝑖,𝑗) where 𝑖 and 𝑗 denote the source and target nodes, 

respectively. The matrix element 𝑔𝑖,𝑗 = 1 if there is a connection from 𝑖 to 𝑗; otherwise it is 0 [6]. In 

this study we works with only two neurons, meaning that the matrix 𝐺 is two dimensional with zero 

components in the main diagonal following the fact that the self-connectivity is excluded. 

From mathematical neuroscience point of view, the question of how the two neurons do interact 

to each other (e.g., coupling scheme) and its impacts are very central [7] [8]. For instance, in which 

conditions the regular and irregular firing behaviours do exist in the biological neurons? [9]. 

 
1 The rate of neuronal firing is defined as a ratio of 1 ISI⁄ . The subscript 0 means that the ISI is constant. 
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Numerous experimental and computational studies have been devoted to investigate such dynamics. 

As for instance, the phase locking synchronization in the original Kuramoto model is characterized 

by a zero phase-lag of oscillators which is induced by a sufficiently strong coupling strength [10]. 

The finding is consistent to that have been observed in the real experimental setup of brain stimulation 

[11]. Meanwhile, the synchronous state in the populations of neurons is characterized by strong 

correlations of the pulses in single neuron level [12]. In the cortical neurons, the presence of cortico-

thalamo-cortical feedback loops may contribute to the synchronization of cortical activities [13]. 

In this paper we discuss the impact of coupling schemes on the neuron dynamics. In contrast to 

the original model for large-scale neurons studied in most computational studies, here we limit 

ourselves on two mutually coupled oscillators to carefully illustrate physically the emergence of 

periodic synchronous regime under the control of coupling schemes. At first, we consider phase 

difference, a simplest scheme in the sinusoidally coupled Kuramoto oscillators which have a 

widespread application in many natural systems [14]. We state the main results in the form of theorem 

and prove the existence of phase-locked dynamics and its stability. Next, we focus on the pulse as an 

elementary unit in the signal transmission amongst neurons. The neuron model used here is one-

dimensional leaky integrate-and-fire (LIF) neuron with a delta pulse. The LIF neuron is selected as it 

is widely used and applicable for numerical and analytical treatments.  

 
2. Methods 

This study uses a descriptive-type quantitative design. The data is collected through numerical 

integration methods, while the time series analysis is carried out to characterize the emerging 

dynamical regimes. More specifically, the research procedures consist of three main steps: model 

formulation, numerical simulation, and bifurcation analysis as described below. 

2.1 Model formulation 

In this step, we review the mathematical models describing the interaction of two neurons. The 

first model replicates the experimental setup of two pendulum clocks studied a long time ago by a 

Mathematician Christiaan Huygens. The second one describes two synaptically coupled Leaky 

integrate-and-fire (LIF) neurons. Here, the synaptic coupling is ruled by a delta function. 

2.2 Simulations 

Next, we simulate the models by making a use of Euler integration scheme implemented in C 

programming languages. The main point is observing the emergence of dynamical behaviour from 

the two interacting neurons.   

2.3 Bifurcation analysis 

In the final step, we analyse the emerging dynamics in terms of bifurcation theory and compare 

the analytical results with numerical ones. In the case of LIF neuronal model, we make a use of the 

synchrony measure 𝜎 = 〈|𝑢2(𝑡) − 𝑢1(𝑡)|〉 where 〈∗〉 denotes time averaging. If 𝜎 = 0 the two 

neurons are perfectly locked. 

3. Results and Discussions 

In this section, we introduce the neuron models and the corresponding interaction scheme. Our 

aim is to answer a question on which way the connectivity affects the dynamics of coupled neurons. 

We begin with the simplest coupling, based on the phase differences of Kuramoto oscillators [10]. 

Next, we present the role of pulses on neuronal dynamics, taking into account the LIF neurons as a 

paradigmatic model. 
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3.1 Phase difference 

The phase difference (or phase shift) is a difference between two phases of two periodic 

functions. In this context, the dynamics of each single oscillator changes according to the phase 

difference with other oscillators. In principle, the interaction can be either attractive or repulsive. The 

experiment of two pendulum clocks (like in the Huygens’s experiment) or metronomes attached to a 

common vibrating support is perhaps the oldest setup where one can observe such a type of dynamics 

[15]. In the context of biological neurons, the phase difference is equivalent to that of gap junction, 

connecting the axon terminal of presynaptic neuron and the receptor of postsynaptic one which 

enables direct communication amongst neurons [16]. 

 

Definition 1. Consider the following systems 

 

{

𝑑Φ1

𝑑𝑡
= 𝜔1 + 𝜇 sin(Φ2 − Φ1)

𝑑Φ2

𝑑𝑡
= 𝜔2 + 𝜇 sin(Φ1 − Φ2)

                                                                   (1) 

 

where  Φ1, Φ2 and 𝜔1, 𝜔2 stands for the phases and angular frequencies of oscillator 1 and 2, 

respectively. The coupling term depends sinusoidally on the phase difference with 𝜇 > 0 as the 

coupling strength. 

Let us now define a phase difference Φ(𝑡) = Φ1(𝑡) − Φ2(𝑡). If we take a derivative of both 

sides, then the coupled system of Eq. (1) can be reduced to a single equation, 

 
𝑑Φ

𝑑𝑡
= 𝜔 − 2𝜇 sin(Φ)                                                                             (2) 

 

where 𝜔 = 𝜔1 − 𝜔2 defines a frequency difference. This formulation helps us to understand the 

behaviour of coupled systems (1) under the actions of parameter 𝜔 and 𝜇. 

 

Theorem 1. The equilibrium Φ∗ for system (2) if it exists is not unique. 

 

Proof. Assume that Φ∗ exists and it is unique. By definition of equilibrium: any solutions Φ𝑘
∗ = Φ𝑙

∗ 

implies that 

 

ω = 2μ sin(Φ𝑘
∗ ) = 2μ sin(Φ𝑙

∗),                                                        (3) 

 

for nonnegative integers 𝑘 and 𝑙. Choosing Φ𝑘
∗ =

𝜋

2
  and Φ𝑙

∗ =
3𝜋

2
 contradicts the equality (3) and 

hence proves the non-uniqueness of Φ∗. • 

 

Theorem 2. The equilibrium Φ∗ = 0 is stable, if 𝜔 = 0. 

 

Proof. Since 𝜔 = 0 then 𝑓(Φ) = −2𝜇 sin(Φ). This implies 𝑓′(0) = −2𝜇 cos(0) = −2𝜇 < 0 and 

hence Φ∗ = 0 is stable. • 

 

The interpretation of Theorem 1 and Theorem 2 is shown in the Figure 2. The stable and 

unstable equilibrium points are denoted as solid red dots and open circles, respectively. The red cross 

denotes a coordinate (0, 𝜔).  
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Figure 1. A graph of 
𝑑Φ

𝑑𝑡
= 𝑓(Φ) of Eq. 2 for 𝜔 = 1 and 𝜇 = 1. 

 

The equilibrium Φ∗ for Eq. (2) can either appear or disappear as the parameter 𝜔 is varied. It 

exists if  −𝜔𝑐 ≤ 𝜔 ≤ 𝜔𝑐 where 𝜔𝑐 is a critical (bifurcation) point. A special case when the oscillators 

1 and 2 have equal frequency, i.e., 𝜔 = 0, the solution Φ∗ = 0 is stable as stated by Theorem 3.2. 

Therefore, they can exhibit in-phase synchronization, a regime when two oscillators move in the same 

direction simultaneously (see Figure 2a). 

To find 𝜔𝑐, let’s impose a condition when the graph 𝑓(Φ) = 𝜔 − 2𝜇 sin(Φ) is tangent to the 

Φ axis in correspondence of the equilibrium point. So, we have an equality 

 

𝜔 = 2𝜇 sin(Φ)                                                                           (4) 

 

and the corresponding derivative 

𝑑

𝑑Φ
𝜔 = 2𝜇

𝑑

𝑑Φ
sin(Φ).                                                                   (5) 

 

The Eq. (5) implies cos(Φ) = 0 for Φ =
𝜋

2
+ ℓ𝜋 where ℓ is nonnegative integer. Then Eq. (4) 

yields 𝜔𝑐 = 2𝜇. As 𝜇 is increased, the stable equilibrium becomes closer to 0 (see again Figure 1) 

which means that the phase-lag becomes smaller. Here, the coupling is said to be attractive, and this 

explains the scenario in Figure 2b and c. To approximate 𝜇 for small Φ (i.e., Φ ≪ 1) impose 

sin(Φ) ≈ Φ, and from Eq. (4) we have 𝜇 = 𝜔
2Φ⁄ . 

 

 
Figure 2. The time trace of phase oscillator 1 (black) and 2 (red): a) 𝜔1 = 1, 𝜔2 = 1, and 𝜇 = 0.1 ;  

            b) 𝜔1 = 2, 𝜔2 = 1, and 𝜇 = 1 ; c) 𝜔1 = 2 𝜔2 = 1, and 𝜇 = 3. 
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Figure 2 compares the behaviour of the system (1) for three different values of (𝜔1, 𝜔2, 𝜇). 

Panel a) corresponds to 𝜔1 = 1, 𝜔2 = 1, and 𝜇 = 0.1. Panel b) and c) correspond to the same 

frequencies 𝜔1 = 2, 𝜔2 = 1 but different coupling strength 𝜇 = 1, 𝜇 = 3 respectively. In the panel 

a), the two oscillators are initially different from one another with respect to their phase. As the time 

goes on, they become indistinguishable and their phase difference equal to zero. In contrast, panel b) 

and c) show a condition where the phase-lag between oscillator 1 and 2 is finite and constant. Notice 

that, the phase-lag in c) is smaller than that of b) due to the effect of the coupling strength. 
 

3.2 Pulsatile coupling 

In this section we discuss a situation in which the neuron is stimulated by the presynaptic spikes 

(pulses). The synapse can either be electrical or chemical. In the electrical synapse, the signal 

transmission can occur even when the membrane potential of the pre-synaptic neuron below threshold 

[17]. Contrarily, the signal transmission in the chemical synapse occurs when the membrane potential 

passed a threshold. In this study, we focus on the chemical synapse. 

 

Definition 2. Let’s consider two identical LIF neurons where 𝑢1(𝑡) and 𝑢2(𝑡) are used to describe 

the membrane potential for neuron 1 and 2, respectively. The evolution equation of membrane 

potentials for the two neurons is given by 

 

{
𝜏𝑚

𝑑𝑢1

𝑑𝑡
= −𝑢1(𝑡) + 𝑅𝐼1

𝑠𝑦𝑛(𝑡)

𝜏𝑚

𝑑𝑢2

𝑑𝑡
= −𝑢2(𝑡) + 𝑅𝐼2

𝑠𝑦𝑛(𝑡)

                                                                 (6) 

 

and combined with the reset conditions 

𝑢1 ≥ 𝜗 ⟹ 𝑢1 = 𝑢𝑟  

𝑢2 ≥ 𝜗 ⟹ 𝑢2 = 𝑢𝑟.   

 

Whenever neuron 1 or 2 passed a threshold 𝜗, it is reset to 𝑢𝑟 and experiences a refractory time 

𝑡𝑟 for which the neuron is insensitive to the inputs. 

The variables 𝐼1
𝑠𝑦𝑛(𝑡) and 𝐼2

𝑠𝑦𝑛(𝑡) characterize the synaptic input for neuron 1 and 2, 

respectively and defined as 

 

𝐼1
𝑠𝑦𝑛(𝑡) = 𝜇 ∑ 𝑠(𝑡 − 𝑡𝑛

2)

𝑛

+ 𝐼0                                                                    (7) 

𝐼2
𝑠𝑦𝑛(𝑡) = 𝜇 ∑ 𝑠(𝑡 − 𝑡𝑛

1)

𝑛

+ 𝐼0.                                                                   (8) 

 

The parameters 𝜇 = 𝜇0 2⁄  and 𝐼0 are the coupling strength and constant current, respectively. 

The synapse is excitatory (inhibitory) if 𝜇 > 0(𝜇 < 0). The sums run over all pulses emitted by the 

neuron 1 and 2 at a time 𝑡𝑛
1 and 𝑡𝑛

2, respectively.  

Each pulse being emitted by a single neuron is described by the function s(t). The shape of a 

single pulse can take many forms [2]. We classify the delta-pulses which have infinitely narrow width 

and the pulses with the finite widths (e.g., exponential, and alpha pulses). The definition of each pulse 

is given below. 
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Figure 3. Pulse shape: a) delta pulse, b) exponential pulse, c) alpha pulse 

 

Definition 3. Delta Pulse, Exponential Pulse, and Alpha Pulse: 

▪ Delta Pulse [𝑠(𝑡) = 𝛿(𝑡)] 

 

𝛿(𝑡) = {
+∞, 𝑡 = 0

0, 𝑡 ≠ 0
                                                                                                                                     (9) 

 

▪ Exponential Pulse 

 

𝑠(𝑡) = 𝛼𝑒−𝛼𝑡, 𝑡 > 0                                                                                                                                 (10) 

 

▪ Alpha Pulse 

 

𝑠(𝑡) = 𝛼2𝑡𝑒−𝛼𝑡, 𝑡 > 0                                                                                                                              (11) 

  

The parameter 
1

𝛼
 is the width of the exponential and alpha pulses. Notice that all pulses are 

normalized to area 1 so that one can easily compare the coupling strengths. The shapes of s(t) are 

displayed in Figure 3. In all cases, the presynaptic spikes occur at time t = 0 while for t < 0, s(t) = 0.  

 

 
Figure 4. The time evolution of membrane potential for neuron 1 (black) and 2 (red) with mutual  

            excitatory coupling and 𝜇0 = 0.6. The blue dashed line corresponds to 𝑇𝑟 

 

Figure 4 displays the time series of membrane potential for the two LIF neurons with delta 

pulses. The initial conditions for the membrane potential 𝑢1,2(0) are selected from uniform and 

random distributions. All parameter sets to produce Figure 4 are displayed in Table 1 and assumed to 

be identical for all neurons. 
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Table 1. Parameterization 

No. Parameters  References 

1. Reset potential (𝑢𝑟) 0 mV [4] 

2. Threshold (𝜗) 15 mV [4] 

3. Refractory time (𝑡𝑟) 0.1 ms Assumed  

4. Resistance (𝑅) 1 Ω [4] 

5.  Constant current (𝐼0) 20 mV [4] 

6. Membrane time constant (𝜏𝑚) 10 ms [4] 

7.  Coupling strength (𝜇0 > 0) [0.1, 1] Assumed 

 

A general remark concerns on the oscillatory behaviour of the neuron 1 and 2 under the action 

of a constant current I0. When 𝜇0 = 0, the membrane potential for neuron 1 and 2 evolves 

independently according to Eq. (6) and have an equal period or inter-spike interval 

 

𝑇 = 𝑡𝑟 + 𝜏𝑚 ln (
𝑅𝐼0

𝑅𝐼0 − 𝜗
)                                                                (12) 

 

If 𝜇0 > 0 we notice that for the fully excitatory connections; the firing of presynaptic neuron 

kicks the membrane potential of the postsynaptic neuron forward which then accelerates its firing 

rate. Interestingly, after a finite amount of time around 𝑡 ≈ 106 ms (see the blue dashed line in Figure 

4) the phases of two neurons locked and they start to fire the pulse simultaneously because of such 

mutual interaction. The inter-spike interval 𝑇 ≈ 13.96 fits the formula of Eq. (12). For future 

reference, the time needed by the neurons to attains the phase-locking dynamics is defined by a 

transient time 𝑇𝑟.  

 

 

Figure 5. Transient time 𝑇𝑟 versus coupling strength 𝜇0. 

 

Practically, we compute the transient time 𝑇𝑟 as a function of 𝜇0 as follows: in each integration 

time step the condition 𝜎(𝑡) = |𝑢2(𝑡) − 𝑢1(𝑡)|  is imposed in such way that 𝑇𝑟 = 𝑚𝑖𝑛{𝑡|𝜎(𝑡) = 0}. 

The result is displayed in Figure 5: there one can see the dependence of transients on the coupling 

strength. As 𝜇0 is increased, the rate of convergence to the periodic synchronous dynamics becomes 

faster. 

Previous studies suggest that synchrony in neuronal networks might be associated with the 

neurological diseases such as epilepsy and seizures [18] [19]. It has been initially studied rigorously 
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by Peskin (1975) and then generalized by Mirollo and Strogatz [20] for any two pulse-coupled 

oscillators interacting through delta pulses. In a more complicated physiological structures such as 

two populations of excitatory and inhibitory neurons, the synchrony and phase-locking behaviours 

are robust in the presence of finite pulses [21].  

4. Conclusion 

In this paper, we have discussed the role of coupling schemes on neuron dynamics. First, we 

consider a phase difference of two sinusoidally coupled oscillators and found they becomes 

indistinguishable, i.e. phase difference is exactly 0, if their frequencies are identical. Meanwhile, their 

phase difference is not zero and finite, as long as the frequencies are not identical. Secondly, we 

consider two identical LIF neurons synaptically coupled through delta pulses and observe a phase-

locked and perfect synchronization for the excitatory postsynaptic potential, similar to that have been 

found in the former case.  

Finally, it is enlightful to notes some limitations of this study. Here, we are working with a 

minimal network of two identical oscillators (neurons), while the brain has a complex structure and 

it is organized into multi-layers of many interacting units. We argue the same scenario emerges in a 

larger system sizes under several conditions. For example, in two interacting populations of excitatory 

and inhibitory neurons the perfect synchronization exists if the inhibition prevails against excitation 

[22]. Further studies are hereby required. 
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